Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Hand

29.06.2004


DNA-basierte molekulare Maschine, die Thrombin abwechselnd binden und wieder freigeben kann

... mehr zu:
»Aptamer »DNA »Thrombin

Nanoroboter und molekulare Maschinen sind heute nicht mehr der Phantasie von Science-Fiction-Autoren vorbehalten, sondern ein sehr realistisches Ziel ernsthafter Forschung. So ist es Münchner Forschern nun gelungen, eine Art "molekularer Hand" zu konstruieren, die einer äußeren Steuerung gehorchend ein Molekül des menschlichen Blutgerinnungsfaktors a-Thrombin greifen und auch wieder loslassen kann.

Ein besonders geeignetes Material für die Konstruktion molekularer Maschinenteile ist unsere Erbsubstanz DNA. So wurden bereits mehrfach nanomechanische Strukturen auf DNA-Basis entwickelt, die verschiedene dehnungsartige sowie Drehbewegungen ausführen können. Eine spezielle Funktion erfüllten sie allerdings bisher nicht. Anders nun die molekulare Hand des Teams um Friedrich C. Simmel, die tatsächlich zupacken kann. Denn die DNA-Hand der Münchner Forscher basiert auf einem DNA-Typus mit Funktionalität, einem so genannten Aptamer. Aptamere sind kurze Abschnitte einzelsträngiger DNA, die gezielt aus einem Zufallspool unzähliger verschiedener DNA-Sequenzen herausgefischt werden.


Selektionskriterium ist eine besonders starke Neigung des Aptamers, an ein bestimmtes Protein oder auch kleines Molekül zu binden. Simmel und seine Kollegen wählten ein Aptamer, das den menschlichen Blutgerinnungsfaktor a-Thrombin bindet. Das Aptamer besteht aus 15 Basen, die sich in Gegenwart von Kaliumionen zu einer Struktur mit einem würfelähnlichen Bereich anordnen. In dieser Konformation "greift" die "Hand" zu und hält das Thrombin fest. Zur Steuerung der Hand hängten die Wissenschaftler außerdem einen "Schalthebel" an, ebenfall ein kurzer DNA-Strang. Und so funktioniert die Steuerung: Als "Handöffner" fungiert ein weiterer DNA-Strang, der komplementär, das heißt ein genaues Gegenstück zum Schalthebel und zu einem Teil der Hand ist. Wird dieser in die Lösung gegeben, lagert er sich an seinen Gegenpart an und löst dabei die Würfelkonformation auf - die Hand lässt das Thrombin-Molekül los. Der Handöffner hat aber noch ein weiteres Stück DNA, das ungepaart geblieben ist. Hier kann nun ein zweiter DNA-Steuerstrang angreifen. Er bindet an den Handöffner und löst ihn von Hand und Schalthebel ab. Die Hand ist nun wieder frei, zum Würfel zu falten und Thrombin erneut zu binden.

"Unsere molekulare Maschine kann Thrombin viele Male binden und freigeben," sagt Simmel. "Sie erfüllt also die Funktion, die Thrombin-Konzentration in der Lösung zwischen einem niedrigen und einem höheren Niveau präzise zu steuern." Nach diesem Prinzip sollten sich weitere Nanomaschinen konstruieren lassen.

| idw
Weitere Informationen:
http://www.gdch.de

Weitere Berichte zu: Aptamer DNA Thrombin

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Impfstoff-Kandidat gegen Malaria erfolgreich in erster klinischer Studie untersucht
25.04.2018 | Universitätsklinikum Heidelberg

nachricht Demographie beeinflusst Brutfürsorge bei Regenpfeifern
25.04.2018 | Max-Planck-Institut für Ornithologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Impfstoff-Kandidat gegen Malaria erfolgreich in erster klinischer Studie untersucht

25.04.2018 | Biowissenschaften Chemie

Erkheimer Ökohaus-Pionier eröffnet neues Musterhaus „Heimat 4.0“

25.04.2018 | Architektur Bauwesen

Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

25.04.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics