Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Evolution im Reagenzglas

19.05.2004


Abb. 1: Roboter (Tecan Genesis) mit 96-fachem Pipettierkopf, mit dem die Reaktionslösungen für die gerichtete Evolution enantioselektiver Enzyme angesetzt werden können.

Bild: Max-Planck-Institut für Kohlenforschung


Max-Planck-Chemiker haben ein fundamental neues Prinzip entwickelt, mit dem die Effizienz enantioselektiver Biokatalysatoren beträchtlich gesteigert werden kann


Katalysatoren steuern mehr als 80 Prozent aller großtechnischen Prozesse in der chemischen Industrie. Von besonderem Interesse sind deshalb Katalysatoren, die es ermöglichen, so genannte chirale, also spiegelbildliche Verbindungen, gezielt herzustellen. Chirale Verbindungen werden heute vor allem als Medikamente, Pflanzenschutzmittel oder sonstige Wirkstoffe eingesetzt. Wissenschaftler des Max-Planck-Instituts für Kohlenforschung in Mülheim/Ruhr haben sich nun Prinzipien der Evolution zunutze gemacht und ein grundsätzlich neues Verfahren erfolgreich entwickelt, mit dem man die Enantioselektivität von Biokatalysatoren (Enzyme) gezielt steigern kann. Dazu lösten die Forscher in dem Gen-Abschnitt, der das Enzym kodiert, zufällige Mutationen aus. Die mutierten Gene wurden dann in Bakterien eingeschleust, und unter den auf diese Weise erzeugten Enzymen dann in einem Hochdurchsatz-Verfahren diejenigen mit der höchsten Enantioselektivität für ein bestimmtes Produkt bestimmt. Den Forschern gelang es durch wiederholte Mutation, die Enantioselektivität von Enzymen von unter 10 auf über 90 Prozent zu steigern (PNAS, 20. April 2004). Ferner gelang es ihnen, die Richtung der Enantioselektivität umzukehren.

In der Natur und in der synthetischen organischen Chemie gibt es eine Vielzahl an Stoffen bzw. chemischen Verbindungen, die man als Enantiomere bezeichnet. Dabei handelt es sich um spiegelbildliche Verbindungen, die man nicht zur räumlichen Deckung bringen kann wie die rechte oder linke Hand, sondern chiral (von griechisch ceir = Hand) sind. Viele synthetische Wirkstoffe wie zum Beispiel etliche Medikamente kommen als Enantiomere vor, wobei meist nur die eine enantiomere Form die gewünschte biologische Wirkung entfaltet, während das spiegelbildliche Gegenstück unnötigen "Ballast" darstellt oder sogar zu einer biologisch extrem unerwünschten Wirkung führt. Daher sind Katalysatoren, die wahlweise eine der beiden Formen eines chiralen Produktes stereoselektiv zugänglich machen, begehrte Wirkstoffe in der Fein- und der pharmazeutischen Chemie. Die zwei wichtigsten Optionen für Katalysatoren sind Übergangsmetall-Verbindungen oder biologische Enzyme. Doch leider ist die Enantioselektivität einer im Labor ablaufenden Stoffumwandlung oft unzureichend, so dass schwer trennbare Gemische enantiomerer Produkte entstehen. Die Entwicklung neuer Konzepte ist daher unerlässlich.


Vor einigen Jahren haben Wissenschaftler um Prof. Manfred T. Reetz am Max-Planck-Institut für Kohlenforschung einen grundsätzlich neuen Ansatz zur Entwicklung enantioselektiver Enzyme vorgeschlagen, die auf der "Evolution im Reagenzglas" beruht. Die Strategie besteht aus einer Kombination von molekularbiologischen Methoden zur Zufallsmutagenese und Gen-Expression mit einem effizienten Screening-System, das es ermöglicht, Tausende von enantioselektiven Mutanten sehr schnell zu durchsuchen. Dabei wird die beste Enzym-Mutante identifiziert und die entsprechende Gen-Mutante erneut der Mutagenese und einem anschließenden Screening unterworfen, ein Vorgang, der beliebig oft wiederholt werden kann. Kenntnisse der Struktur oder des Mechanismus des Enzyms sind hierzu nicht erforderlich, vielmehr verlässt man sich auf den evolutionären Verlauf des Prozesses.

Tatsächlich ist es den Forschern auf diesem Wege jetzt gelungen, die Enantioselektivität einer Lipase-katalysierten hydrolytischen Ester-Spaltung um einen Faktor von fast 50 zu erhöhen. Die Lipase-Mutante mit der höchsten Enantioselektivät enthält sechs Mutationen, das heißt sechs von den insgesamt 285 Aminosäuren wurden im Zuge eines darwinistischen Prozesses ausgetauscht. Verblüfft stellten die Forscher hierbei fest, dass die meisten Mutationsstellen weit weg vom aktiven Zentrum liegen. In Zusammenarbeit mit Walter Thiel, theoretischer Chemiker am gleichen Institut, gelang es ihnen schließlich, diesen ungewöhnlichen Effekt zu erklären: Die Mutationen führen zu einer neuen chemischen Bindungstasche und stabilisieren zugleich den Übergangszustand der Reaktion des bevorzugten Enantiomers [2].

In einem neuen Projekt haben die Forscher das Evolutionskonzept nun auf das für die synthetische Chemie wichtige Gebiet der Partialoxidation ausgedehnt. Dabei geht es um die gerichtete Evolution enantioselektiver Cyclohexanon-Monooxygenasen (CHMO), die Luftsauerstoff als Oxidationsmittel verwenden. Dabei gelang es, die Enantioselektivität der CHMO-katalysierten Baeyer-Villiger-Reaktion von 4-Hydroxycyclohexanon von 9 auf 90 Prozent zu steigern. Mit weiteren Substraten (andere Cyclohexanon-Derivate) wurden sogar Enantioselektivitäten von 95 bis 99 Prozent erzielt.

Die Mülheimer Max-Planck-Wissenschaftler haben auch die ersten Hochdurchsatz-Screening-Systeme für die rasche Erfassung der Enantioselektivität von Tausenden von Biokatalysatoren entwickelt. In ihrer neuesten Entwicklung setzen sie auf die Anwendung der tomographischen NMR-Spektroskopie bzw. des "chemical imaging" [3].

Mit dem von Reetz und seinen Mitarbeitern entwickelten Konzept der gerichteten Evolution enantioselektiver Enzyme steht jetzt ein grundsätzlich neues und funktionstüchtiges Werkzeug zur Verfügung, mit dem hochselektive Biokatalysatoren für einen ökonomisch und ökologisch sinnvollen Einsatz in der Synthesechemie entwickelt werden können. Erste Anwendungen sind inzwischen in der chemischen Industrie bereits erfolgt (Degussa/Deutschland sowie Diversa/USA).
]

Originalveröffentlichung:

[1] Manfred T. Reetz
Controlling the enantioselectivity of enzymes by directed evolution: Practical and theoretical ramifications
PNAS 2004, 101, 5716

[2] M. Bocola, N. Otte, K. E. Jaeger, M. T. Reetz, W. Thiel
Learning from directed evolution: Theoretical investigations into cooperative mutations in lipase enantioselectivity
ChemBioChem 2004, 5, 214

[3] M. T. Reetz, P. Tielmann, A. Eipper, A. Ross, G. Schlotterbeck
A high-throughput NMR-based ee-assay using chemical shift imaging
Chem. Commun. (Cambridge) 2004, im Druck


Weitere Informationen erhalten Sie von:

Prof. Manfred T. Reetz
Max-Planck-Institut für Kohlenforschung, Mülheim
Tel.: 0208 306-2000
Fax: 0208 306-2985
E-Mail: reetz@mpi-muelheim.mpg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.innovations-report.de/html/profile/profil-505.html
http://www.mpi-muelheim.mpg.de/mpikofo_home.html
http://www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/

Weitere Berichte zu: Biokatalysator Enantioselektivität Enzym Evolution Mutation

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics