Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erfahrung verbindet - Verschaltungen zwischen Nervenzellen durch gemeinsame Erfahrung

06.05.2004


Heidelberger Max-Planck-Wissenschaftler haben mit bisher unerreichter Genauigkeit beobachtet, wie Verschaltungen zwischen Nervenzellen durch gemeinsame Erfahrung entstehen


In der Großhirnrinde von Nagetieren (rechtes Bild) lassen sich so genannte Barrels (tönnchenförmige Strukturen) darstellen, die in ihrer Anordnung jener der Tasthaare auf der Rattennase entsprechen und Sinnesreize bevorzugt von dem ihnen zugeordneten Tasthaar erhalten. Bild: Max-Planck-Institut für medizinische Forschung


In den Reihen A, B und C wurden die Tasthaare entfernt. Die Bilder zeigen die elektrischen Erregung (pink) zu verschiedenen Zeiten nach der Stimulation des D2-Haars. Man erkennt, dass sich die Erregung bevorzugt in Richtung auf die Reihe mit den noch intakten Haaren (E) ausbreitet.
Bild: Max-Planck-Institut für medizinische Forschung



Wie lernt das Gehirne, sich an veränderte Umweltbedingungen anzupassen, ist eine der großen Fragen in der heutigen Hirnforschung. Bereits vor einigen Jahrzehnten wurde klar, dass veränderte Erfahrungen in der individuellen Entwicklung, wie zum Beispiel durch das frühkindliche Schielen oder durch Verletzungen nach einem Schlaganfall, zu strukturellen Veränderungen im Gehirn führen. In einer in "Science" publizierten Studie ist es Carl Petersen und seinen Kollegen Michael Brecht, Thomas Hahn und Bert Sakmann am Max-Planck-Institut für medizinische Forschung in Heidelberg gelungen, die zellulären Mechanismen solcher erfahrungsbedingter Veränderungen im sich entwickelnden Gehirn erstmals mit bisher nicht gekannter Genauigkeit aufzuklären (Science, 30. April 2004).



Die Wissenschaftler hatten speziell jenen Teil der Großhirnrinde (Kortex) von Ratten untersucht, der die Empfindungen von den für die Tiere sehr wichtigen Tasthaaren an der Schnauze verarbeitet. Dieser Barrel Cortex (BC) genannte Hirnteil von Nagetieren ist ein wichtiges Modellsystem in der Neurobiologie. Das Besondere am Barrel Cortex ist, dass man mit geeigneten Gewebefärbungen tönnchenförmige Strukturen (so genannte Barrels) darstellen kann. Diese Barrels zeigen die gleiche Anordnung wie die Tasthaare auf der Nase, und jeder der Barrels erhält vornehmlich Informationen von dem ihm entsprechenden Barthaar (vgl. Abb. 1).

Dieser Teil der Hirnrinde ist in Nagetieren entsprechend seiner Wichtigkeit sehr groß und klar geordnet. Misst man nun die elektrischen Impulse von Neuronen, wie zum Beispiel die Aktionspotentiale oder das Membranpotential einzelner Zellen, und markiert den Punkt der Messung, so kann man diese Daten auf der anatomischen Karte der Hirnrinde abbilden. Auf diese Weise lassen sich Beziehungen zwischen dem Ort und der Form einer Nervenzelle und ihrer elektrischen Funktion ableiten.

Wie bereits von früheren Untersuchungen bekannt war, verändert sich dieser Gehirnbereich, wenn einem Tier frühzeitig nach der Geburt bestimmte Tasthaare entfernt werden und die von diesen Haaren kommenden Informationen den jungen Tieren folglich fehlen. Doch die diesen Veränderungen zugrunde liegenden zellulären Mechanismen waren bisher unbekannt. Den Heidelberger Max-Planck-Forschern gelang es nun, diese Veränderungen mit neuartigen Methoden zu untersuchen. Um die durch die Reizung eines Tasthaars hervorgerufene elektrische Aktivität sichtbar zu machen, benutzten sie einen spannungsabhängigen Fluoreszenzfarbstoff, der seine Fluoreszenz entsprechend der elektrischen Aktivität des Gehirns verändert. Auf diese Weise kann man die "Erregung" einer großen Zahl von Nervenzellen und die räumliche Verteilung des Erregungsmusters mit einer zeitlichen Auflösung von einigen Tausendstel Sekunden tatsächlich "sehen".

Einige Tage nach dem Entfernen der Barthaare konnten die Forscher beobachten, dass sich die durch Reizung eines der verbliebenen Tasthaare ausgelöste Erregung zu jenen Hirnregionen hin orientierte, die noch intakte Haare repräsentierten, und weg von jenen, die keine Informationen mehr von ihrem Tasthaar erhalten. Diese Veränderungen des Signalflusses im Gehirn konnten die Forscher darauf zurückführen, dass sich sowohl die Verschaltungen der Nervenzellen als auch die Anatomie der Zellen durch das Auswachsen neuer Zellfortsätze verändert hatten. So stellt es sich heraus, dass sich zwischen Regionen, die den sensorischen Input von intakten Tasthaaren erhalten, mehr Synapsen und mehr Verzweigungen neuer Zellfortsätze ausbilden. Auf der anderen Seite wurden die Verbindungen zu Zellen in jenen Regionen, die keinen Tasthaar-Input erhielten, schwächer.

Die Forscher schließen aus ihren Beobachtungen, dass sich kortikale Areale mit ähnlichem Input während der Entwicklung bevorzugt verbinden und damit möglicherweise die Grundlage für die Arbeitsteilung in der Großhirnrinde liefern. Solche drastischen zellulären Veränderung nach dem bloßen Entfernen von Tasthaaren sind deswegen von großem Interesse, weil die Anpassungsfähigkeit des Gehirns in der Entwicklung oder nach Schädigungen wie etwa beim Schlaganfall nicht auf der Bildung neuer Nervenzellen beruhen kann, sondern eine Modifikation der vorhandenen Zellen voraussetzt.

Weitere Informationen erhalten Sie von:

Dr. Michael Brecht
Max-Planck-Institut für medizinische Forschung, Heidelberg
Tel.: 06221 486-420, Fax: -459
E-Mail: brecht@mpimf-heidelberg.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.heidelberg.mpg.de

Weitere Berichte zu: Nagetiere Nervenzelle Tasthaar Verschaltungen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten