Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erfahrung verbindet - Verschaltungen zwischen Nervenzellen durch gemeinsame Erfahrung

06.05.2004


Heidelberger Max-Planck-Wissenschaftler haben mit bisher unerreichter Genauigkeit beobachtet, wie Verschaltungen zwischen Nervenzellen durch gemeinsame Erfahrung entstehen


In der Großhirnrinde von Nagetieren (rechtes Bild) lassen sich so genannte Barrels (tönnchenförmige Strukturen) darstellen, die in ihrer Anordnung jener der Tasthaare auf der Rattennase entsprechen und Sinnesreize bevorzugt von dem ihnen zugeordneten Tasthaar erhalten. Bild: Max-Planck-Institut für medizinische Forschung


In den Reihen A, B und C wurden die Tasthaare entfernt. Die Bilder zeigen die elektrischen Erregung (pink) zu verschiedenen Zeiten nach der Stimulation des D2-Haars. Man erkennt, dass sich die Erregung bevorzugt in Richtung auf die Reihe mit den noch intakten Haaren (E) ausbreitet.
Bild: Max-Planck-Institut für medizinische Forschung



Wie lernt das Gehirne, sich an veränderte Umweltbedingungen anzupassen, ist eine der großen Fragen in der heutigen Hirnforschung. Bereits vor einigen Jahrzehnten wurde klar, dass veränderte Erfahrungen in der individuellen Entwicklung, wie zum Beispiel durch das frühkindliche Schielen oder durch Verletzungen nach einem Schlaganfall, zu strukturellen Veränderungen im Gehirn führen. In einer in "Science" publizierten Studie ist es Carl Petersen und seinen Kollegen Michael Brecht, Thomas Hahn und Bert Sakmann am Max-Planck-Institut für medizinische Forschung in Heidelberg gelungen, die zellulären Mechanismen solcher erfahrungsbedingter Veränderungen im sich entwickelnden Gehirn erstmals mit bisher nicht gekannter Genauigkeit aufzuklären (Science, 30. April 2004).



Die Wissenschaftler hatten speziell jenen Teil der Großhirnrinde (Kortex) von Ratten untersucht, der die Empfindungen von den für die Tiere sehr wichtigen Tasthaaren an der Schnauze verarbeitet. Dieser Barrel Cortex (BC) genannte Hirnteil von Nagetieren ist ein wichtiges Modellsystem in der Neurobiologie. Das Besondere am Barrel Cortex ist, dass man mit geeigneten Gewebefärbungen tönnchenförmige Strukturen (so genannte Barrels) darstellen kann. Diese Barrels zeigen die gleiche Anordnung wie die Tasthaare auf der Nase, und jeder der Barrels erhält vornehmlich Informationen von dem ihm entsprechenden Barthaar (vgl. Abb. 1).

Dieser Teil der Hirnrinde ist in Nagetieren entsprechend seiner Wichtigkeit sehr groß und klar geordnet. Misst man nun die elektrischen Impulse von Neuronen, wie zum Beispiel die Aktionspotentiale oder das Membranpotential einzelner Zellen, und markiert den Punkt der Messung, so kann man diese Daten auf der anatomischen Karte der Hirnrinde abbilden. Auf diese Weise lassen sich Beziehungen zwischen dem Ort und der Form einer Nervenzelle und ihrer elektrischen Funktion ableiten.

Wie bereits von früheren Untersuchungen bekannt war, verändert sich dieser Gehirnbereich, wenn einem Tier frühzeitig nach der Geburt bestimmte Tasthaare entfernt werden und die von diesen Haaren kommenden Informationen den jungen Tieren folglich fehlen. Doch die diesen Veränderungen zugrunde liegenden zellulären Mechanismen waren bisher unbekannt. Den Heidelberger Max-Planck-Forschern gelang es nun, diese Veränderungen mit neuartigen Methoden zu untersuchen. Um die durch die Reizung eines Tasthaars hervorgerufene elektrische Aktivität sichtbar zu machen, benutzten sie einen spannungsabhängigen Fluoreszenzfarbstoff, der seine Fluoreszenz entsprechend der elektrischen Aktivität des Gehirns verändert. Auf diese Weise kann man die "Erregung" einer großen Zahl von Nervenzellen und die räumliche Verteilung des Erregungsmusters mit einer zeitlichen Auflösung von einigen Tausendstel Sekunden tatsächlich "sehen".

Einige Tage nach dem Entfernen der Barthaare konnten die Forscher beobachten, dass sich die durch Reizung eines der verbliebenen Tasthaare ausgelöste Erregung zu jenen Hirnregionen hin orientierte, die noch intakte Haare repräsentierten, und weg von jenen, die keine Informationen mehr von ihrem Tasthaar erhalten. Diese Veränderungen des Signalflusses im Gehirn konnten die Forscher darauf zurückführen, dass sich sowohl die Verschaltungen der Nervenzellen als auch die Anatomie der Zellen durch das Auswachsen neuer Zellfortsätze verändert hatten. So stellt es sich heraus, dass sich zwischen Regionen, die den sensorischen Input von intakten Tasthaaren erhalten, mehr Synapsen und mehr Verzweigungen neuer Zellfortsätze ausbilden. Auf der anderen Seite wurden die Verbindungen zu Zellen in jenen Regionen, die keinen Tasthaar-Input erhielten, schwächer.

Die Forscher schließen aus ihren Beobachtungen, dass sich kortikale Areale mit ähnlichem Input während der Entwicklung bevorzugt verbinden und damit möglicherweise die Grundlage für die Arbeitsteilung in der Großhirnrinde liefern. Solche drastischen zellulären Veränderung nach dem bloßen Entfernen von Tasthaaren sind deswegen von großem Interesse, weil die Anpassungsfähigkeit des Gehirns in der Entwicklung oder nach Schädigungen wie etwa beim Schlaganfall nicht auf der Bildung neuer Nervenzellen beruhen kann, sondern eine Modifikation der vorhandenen Zellen voraussetzt.

Weitere Informationen erhalten Sie von:

Dr. Michael Brecht
Max-Planck-Institut für medizinische Forschung, Heidelberg
Tel.: 06221 486-420, Fax: -459
E-Mail: brecht@mpimf-heidelberg.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.heidelberg.mpg.de

Weitere Berichte zu: Nagetiere Nervenzelle Tasthaar Verschaltungen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Bluthochdruckschalter in der Nebenniere
20.02.2018 | Forschungszentrum Jülich GmbH

nachricht Markierung für Krebsstammzellen
20.02.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics