Doppelt hält besser – auch bei der Wirkung von Antibiotika

Abb. 1: Oben: Darstellung einer "aufgeschnittenen" 50S-Untereinheit des Ribosoms. Der ribosomale Tunnel ist hervorgehoben. Die Streptogramin-Antibiotika Dalfopristin und Quinupristin befinden sich am Eingang und am oberen Ende des Tunnels. Um den Einfluss von Dalfopristin auf die korrekte Bindung der Peptidyl-tRNA (P-tRNA) zu verdeutlichen, wurde das Modell einer P-tRNA angedockt. Dabei ist ein Überlappen der Moleküle eindeutig erkennbar, weshalb die korrekte (produktive) Bindung der P-tRNA nicht möglich ist. Unten: Zu sehen sind die neben- bzw. übereinander bindenden Moleküle von Dalfopristin und Quinupristin sowie die sie umgebenden rRNA-Nukleotide. Dabei ist die zum synergistischen Effekt beitragende rRNA-Base (A2062 - E. coli) grün hervorgehoben. <br><br> <br><br>Bild: Max-Planck-Arbeitsgruppe für Ribosomenstruktur <br><br>

Hamburger Max-Planck-Wissenschaftlern ist es gelungen, die Wirkungsweise von Zwei-Komponenten-Antibiotika im Ribosom bakterieller Erreger detailliert aufzuklären

Allein in einer Großstadt wie New York sterben jedes Jahr Tausende von Menschen an bakteriellen Infektionen, gegen die kein Antibiotikum (mehr) hilft. Angesichts der zunehmenden Resistenz vieler Erreger kommt einem detaillierten Verständnis, auf welche Art und Weise Antibiotika die Proteinsynthese blockieren, eine äußerst vitale Bedeutung zu. Streptogramin-Antibiotika gehören zu den wirkungsvollsten Medikamenten ihrer Art und sind eine Art „Reserve-Waffe“, wenn andere Medikamente gegen die Erreger bereits versagen. Wissenschaftler der Arbeitsgruppe Ribosomenstruktur der Max-Planck-Gesellschaft am DESY in Hamburg haben jetzt nach mehrjähriger Arbeit den einzigartigen Blockierungsmechanismus aufgeklärt, mit dem Dalfopristin und Quinupristin, die potentesten Vertreter der Streptogramine, die Proteinsynthese von Bakterien blockieren und diese damit abtöten. Die neuen Erkenntnisse wurden in der neuen Open-Access-Zeitschrift „BMC Biology“ (BMC Biology 2004, 2:4, 1 April 2004) von BioMed Central veröffentlicht und werden helfen, dringend benötigte neue Antibiotika zu entwickeln und die Wirksamkeit bereits vorhandener Medikamente gegen resistente Erreger zu verbessern.

Die Besonderheit der Streptogramine, bisweilen auch als Synergimycine bezeichnet, ist ihre synergistische Wirkung: Denn Streptogramine bestehen aus zwei chemisch nicht verwandten Komponenten, üblicherweise als Streptogramin A und B bezeichnet. Die beiden Komponenten können gekoppelt ihre Wirkung potenzieren und sind dadurch in der Lage, auch bereits weitgehend resistente Erreger noch zu eliminieren. Ihre leistungsfähigsten Vertreter sind Dalfopristin und Quinupristin, die in einer 30:70-Mischung seit Anfang des Jahres 2000 unter dem Handelsnamen Synercid® zur Verfügung stehen. Aufgrund seiner synergistischen Wirkung durchbricht Synercid® auch die zunehmende Resistenz von Enterococcus faecium gegen das seit drei Jahrzehnten als „Reserve-Antibiotikum“ verwendete Vancomycin. Enterococcus faecium ist einer der so genannten VREF-Erreger, die aufgrund ihrer Resistenz gegen Vancomycin ebenso gefürchtet sind wie Staphylococcus aureus. Synercid® wird ebenso bei schweren Staphylokokken-Infektionen (inklusive Methicillin-Resistenz) angewendet.

Bemerkenswert ist zunächst, dass zwischen den beiden Molekülen eine enge Wechselwirkung besteht. Diese ist primär für die synergistische Wirkung der Antibiotika verantwortlich, denn damit beide Antibiotika gleichzeitig an die 50S-Untereinheit binden können, muss eine bestimmte rRNA-Base (A2062 – E. coli) im aktiven Zentrum der 50S Untereinheit eine ganz spezifische Konformation einnehmen. Da beide Moleküle von dieser vergleichsweise kleinen Änderung der rRNA-Struktur profitieren, erhöht sich auch wechselseitig ihre Affinität.

Die Aktivitäten der beiden Moleküle ergänzen sich aber auch in ihren Angriffspunkten. Quinupristin, also die Streptogramin-B-Komponente, bindet in ähnlicher Weise wie die Antibiotika Erythromycin oder Roxithromycin im Tunnel der 50S-Untereinheit, so dass das Ribosom nur noch sehr kurze Polypeptidketten erzeugen könnte. Dalfopristin, die Streptogramin-A-Komponente, verhindert auch das noch, indem es direkt im Peptidyl-Transferase-Zentrum bindet, so dass tRNA-Moleküle, die die Aminosäuren anliefern, nicht mehr erfolgreich binden können.

Von besonderer Bedeutung ist noch eine weitere Änderung der rRNA-Struktur, die in erster Linie von Dalfopristin verursacht wird. Eine bestimmte rRNA-Base (U2585 – E. coli) wird unter der Wirkung der Antibiotika nämlich um 180 Grad geklappt. Und es ist gerade diese Base, die für die Aktivität des Ribosoms bei der Bildung von Peptidketten von herausragender Bedeutung ist. Durch die induzierte Änderung kann die Base nicht mehr aktiv am Geschehen Teil nehmen und hinterlässt ein inaktives Ribosom. Diese Inaktivierung des Ribosoms ist sogar dann noch von Dauer, wenn das Streptogramin A schon nicht mehr gebunden ist.

Diese neuen Einblicke in die spezifische Wirkungsweise der Streptogramin-Antibiotika werden helfen, sowohl neue Antibiotika zu entwickeln als auch die Wirksamkeit vorhandener Medikamente zu verbessern.
[AT]

Originalveröffentlichung:

Joerg M. Harms, Frank Schluenzen, Paola Fucini, Heike Bartels, Ada E. Yonath
Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin
BMC Biology 2004, 2:4, 1 April 2004

Weitere Informationen erhalten Sie von:

Dr. Jörg M. Harms
Max-Planck-Arbeitsgruppen für strukturelle Molekularbiologie am DESY, Hamburg
Tel.: 040 8998-2834
Fax: 040 8971-6848
E-Mail: harms@mpgars.desy.de , harms@riboworld.com

Dr. Frank Schlünzen
Max-Planck-Arbeitsgruppen für strukturelle Molekularbiologie am DESY, Hamburg
Tel.: 040 8998-2809
Fax: 040 8971-6848
E-Mail: schluenzen@mpgars.desy.de, schluenzen@riboworld.com

Media Contact

Dr. Andreas Trepte Max-Planck-Gesellschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer