Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Doppelt hält besser - auch bei der Wirkung von Antibiotika

20.04.2004


Abb. 1: Oben: Darstellung einer "aufgeschnittenen" 50S-Untereinheit des Ribosoms. Der ribosomale Tunnel ist hervorgehoben. Die Streptogramin-Antibiotika Dalfopristin und Quinupristin befinden sich am Eingang und am oberen Ende des Tunnels. Um den Einfluss von Dalfopristin auf die korrekte Bindung der Peptidyl-tRNA (P-tRNA) zu verdeutlichen, wurde das Modell einer P-tRNA angedockt. Dabei ist ein Überlappen der Moleküle eindeutig erkennbar, weshalb die korrekte (produktive) Bindung der P-tRNA nicht möglich ist. Unten: Zu sehen sind die neben- bzw. übereinander bindenden Moleküle von Dalfopristin und Quinupristin sowie die sie umgebenden rRNA-Nukleotide. Dabei ist die zum synergistischen Effekt beitragende rRNA-Base (A2062 - E. coli) grün hervorgehoben.



Bild: Max-Planck-Arbeitsgruppe für Ribosomenstruktur


Abb. 2: Durch Dalfopristin (Streptogramin A) induzierte Änderung der Konformation einer rRNA-Base, welche für die Bildung der Peptidkette und damit der Funktion des Ribosomes von herausragender Bedeutung ist. Oben: Die Orientierung in der nativen Struktur. Unten: Durch Dalfopristin induzierte Orientierung. Diese ist stabilisiert durch Wasserstoffbrückenbindungen (weiße Linien) zu zwei weiteren rRNA-Basen (Nummerierung nach E. coli).



Bild: Max-Planck-Arbeitsgruppe für Ribosomenstruktur


Hamburger Max-Planck-Wissenschaftlern ist es gelungen, die Wirkungsweise von Zwei-Komponenten-Antibiotika im Ribosom bakterieller Erreger detailliert aufzuklären


Allein in einer Großstadt wie New York sterben jedes Jahr Tausende von Menschen an bakteriellen Infektionen, gegen die kein Antibiotikum (mehr) hilft. Angesichts der zunehmenden Resistenz vieler Erreger kommt einem detaillierten Verständnis, auf welche Art und Weise Antibiotika die Proteinsynthese blockieren, eine äußerst vitale Bedeutung zu. Streptogramin-Antibiotika gehören zu den wirkungsvollsten Medikamenten ihrer Art und sind eine Art "Reserve-Waffe", wenn andere Medikamente gegen die Erreger bereits versagen. Wissenschaftler der Arbeitsgruppe Ribosomenstruktur der Max-Planck-Gesellschaft am DESY in Hamburg haben jetzt nach mehrjähriger Arbeit den einzigartigen Blockierungsmechanismus aufgeklärt, mit dem Dalfopristin und Quinupristin, die potentesten Vertreter der Streptogramine, die Proteinsynthese von Bakterien blockieren und diese damit abtöten. Die neuen Erkenntnisse wurden in der neuen Open-Access-Zeitschrift "BMC Biology" (BMC Biology 2004, 2:4, 1 April 2004) von BioMed Central veröffentlicht und werden helfen, dringend benötigte neue Antibiotika zu entwickeln und die Wirksamkeit bereits vorhandener Medikamente gegen resistente Erreger zu verbessern.

Die Besonderheit der Streptogramine, bisweilen auch als Synergimycine bezeichnet, ist ihre synergistische Wirkung: Denn Streptogramine bestehen aus zwei chemisch nicht verwandten Komponenten, üblicherweise als Streptogramin A und B bezeichnet. Die beiden Komponenten können gekoppelt ihre Wirkung potenzieren und sind dadurch in der Lage, auch bereits weitgehend resistente Erreger noch zu eliminieren. Ihre leistungsfähigsten Vertreter sind Dalfopristin und Quinupristin, die in einer 30:70-Mischung seit Anfang des Jahres 2000 unter dem Handelsnamen Synercid® zur Verfügung stehen. Aufgrund seiner synergistischen Wirkung durchbricht Synercid® auch die zunehmende Resistenz von Enterococcus faecium gegen das seit drei Jahrzehnten als "Reserve-Antibiotikum" verwendete Vancomycin. Enterococcus faecium ist einer der so genannten VREF-Erreger, die aufgrund ihrer Resistenz gegen Vancomycin ebenso gefürchtet sind wie Staphylococcus aureus. Synercid® wird ebenso bei schweren Staphylokokken-Infektionen (inklusive Methicillin-Resistenz) angewendet.


Bemerkenswert ist zunächst, dass zwischen den beiden Molekülen eine enge Wechselwirkung besteht. Diese ist primär für die synergistische Wirkung der Antibiotika verantwortlich, denn damit beide Antibiotika gleichzeitig an die 50S-Untereinheit binden können, muss eine bestimmte rRNA-Base (A2062 - E. coli) im aktiven Zentrum der 50S Untereinheit eine ganz spezifische Konformation einnehmen. Da beide Moleküle von dieser vergleichsweise kleinen Änderung der rRNA-Struktur profitieren, erhöht sich auch wechselseitig ihre Affinität.

Die Aktivitäten der beiden Moleküle ergänzen sich aber auch in ihren Angriffspunkten. Quinupristin, also die Streptogramin-B-Komponente, bindet in ähnlicher Weise wie die Antibiotika Erythromycin oder Roxithromycin im Tunnel der 50S-Untereinheit, so dass das Ribosom nur noch sehr kurze Polypeptidketten erzeugen könnte. Dalfopristin, die Streptogramin-A-Komponente, verhindert auch das noch, indem es direkt im Peptidyl-Transferase-Zentrum bindet, so dass tRNA-Moleküle, die die Aminosäuren anliefern, nicht mehr erfolgreich binden können.

Von besonderer Bedeutung ist noch eine weitere Änderung der rRNA-Struktur, die in erster Linie von Dalfopristin verursacht wird. Eine bestimmte rRNA-Base (U2585 - E. coli) wird unter der Wirkung der Antibiotika nämlich um 180 Grad geklappt. Und es ist gerade diese Base, die für die Aktivität des Ribosoms bei der Bildung von Peptidketten von herausragender Bedeutung ist. Durch die induzierte Änderung kann die Base nicht mehr aktiv am Geschehen Teil nehmen und hinterlässt ein inaktives Ribosom. Diese Inaktivierung des Ribosoms ist sogar dann noch von Dauer, wenn das Streptogramin A schon nicht mehr gebunden ist.

Diese neuen Einblicke in die spezifische Wirkungsweise der Streptogramin-Antibiotika werden helfen, sowohl neue Antibiotika zu entwickeln als auch die Wirksamkeit vorhandener Medikamente zu verbessern.
[AT]

Originalveröffentlichung:

Joerg M. Harms, Frank Schluenzen, Paola Fucini, Heike Bartels, Ada E. Yonath
Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin
BMC Biology 2004, 2:4, 1 April 2004

Weitere Informationen erhalten Sie von:

Dr. Jörg M. Harms
Max-Planck-Arbeitsgruppen für strukturelle Molekularbiologie am DESY, Hamburg
Tel.: 040 8998-2834
Fax: 040 8971-6848
E-Mail: harms@mpgars.desy.de , harms@riboworld.com


Dr. Frank Schlünzen
Max-Planck-Arbeitsgruppen für strukturelle Molekularbiologie am DESY, Hamburg
Tel.: 040 8998-2809
Fax: 040 8971-6848
E-Mail: schluenzen@mpgars.desy.de, schluenzen@riboworld.com

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/

Weitere Berichte zu: Antibiotikum Dalfopristin Medikament Ribosom Streptogramin

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Geteiltes Denken ist doppeltes Denken
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht Neue CRISPR-Methode enthüllt Genregulation einzelner Zellen
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flashmob der Moleküle

19.01.2017 | Physik Astronomie

Tollwutviren zeigen Verschaltungen im gläsernen Gehirn

19.01.2017 | Medizin Gesundheit

Fraunhofer-Institute entwickeln zerstörungsfreie Qualitätsprüfung für Hybridgussbauteile

19.01.2017 | Verfahrenstechnologie