Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Nanopartikeln "malen"

19.04.2004


Definierte Muster aus Gold-Nanopartikeln in transparenten Materialien - optoelektronische Bauteile von morgen?



Klein, aber oho: Nanopartikel sind so winzig, dass sie eine Art Zwischenstellung zwischen einzelnen Atomen und "normalen" Feststoffpartikeln einnehmen - entsprechend interessant sind ihre optischen und elektronischen Eigenschaften. In einer japanisch-chinesischen Kooperation wurde nun eine Methode entwickelt, mit der Gold-Nanoteilchen so gezielt ausgefällt werden können, dass sich damit farbenfrohe dreidimensionale Bilder in transparenten Materialien "malen" lassen.

... mehr zu:
»Bestrahlen »Goldatome »Laser »Nanopartikel


Der ästhetisch-künstlerische Aspekt der neuen Technik ist aber nur ein untergeordneter. Mit Edelmetall-Nanoteilchen dotierte Materialien sind nämlich heiße Kandidaten für ultraschnelle optische Schaltelemente der Optoelektronik. Die notwendige genau definierte räumliche Verteilung der Nanopartikel innerhalb eines Materials war bisher eine schwierige Hürde. Das Team um Jianrong Qiu hat diese Hürde nun überwunden. Und so sieht die neue Technik im Einzelnen aus: Als Ausgangsmaterial dient ein mit Goldoxid (Au2O3) dotiertes Silikatglas. Wird das Glas mit einem Laser bestrahlt, entstehen winzige graue Pünktchen an den fokussierten Stellen. Die Forscher "malten" so beispielsweise einen etwa 5 mm X 5 mm messenden Schmetterling in das Glas, dessen feine Details gestochen scharf aufgelöst sind. Wird das Glas bei 550 oC getempert, wird das graue Bild farbig: In Abhängigkeit von der Intensität des zuvor eingestrahlten Laserlichtes wird der Schmetterling violett, rot oder gelb. Erneutes Bestrahlen mit dem Laser löscht diese Farbe.

Wie das? Durch den enorm hohen Energieeintrag der kurzen Laserpulse können Elektronen an den bestrahlten Stellen des Glases genug Energie aufnehmen, um sich von ihren Atomkernen zu trennen. Goldionen sind in der Lage, solche freien Elektronen einzufangen, dabei werden sie zu Goldatomen reduziert. Beim anschließenden Erhitzen erhalten die Goldatome dann die nötige Energie, um sich aus dem Silikat-Netzwerk zu lösen und auf Wanderschaft zu gehen. Treffen sie auf andere Goldatome, aggregieren sie zu winzigen Klümpchen. Diese Goldnanopartikel erscheinen farbig, weil sie Licht im sichtbaren Spektralbereich absorbieren. Die absorbierte Wellenlänge hängt aber von der Größe der Nanopartikel ab. Und je höher die Lichtintensität des Lasers, desto mehr reduzierte Goldatome entstehen pro Volumeneinheit, die später als Kristallisationskeime dienen. Beim Erhitzen entsteht eine dementsprechend größere Zahl an Nanoteilchen, die dafür aber kleiner sind. Ein erneutes Bestrahlen mit dem Laser zerbricht die Nanopartikel wieder in winzige Bruchstücke und Atome, das bestrahlte Areal wird wieder transparent.

Die neue Technik könnte ein wichtiger Schritt in Richtung extrem schneller dreidimensionaler optischer Speicher mit ultrahoher Speicherdichte sein. In Gläsern mit hohem Gehalt an Goldionen hofft das Team außerdem, komplette dreidimensionale Nano-Schaltkreise aus Gold herstellen zu können.

Kontakt:

Prof. J. Qiu
Photon Craft Project
Shanghai Institute of Optics and Fine Mechanics
Chinese Academy of Sciences and
Japan Science and Technology Corporation
Shanghai 201800, China
Tel.: (+81) 774-955-205
Fax: (+86) 21-5992-9373
E-mail: jrq@photon.jst.go.jp

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.angewandte.org

Weitere Berichte zu: Bestrahlen Goldatome Laser Nanopartikel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie