Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Navigation von Zugvögeln auf den Sonnenuntergang geeicht

16.04.2004


Eine Veröffentlichung in der renommierten Wissenschaftszeitschrift "Science" vom 16. April 2004, an der der Oldenburger Nachwuchswissenschaftler Dr. Henrik Mouritsen federführend beteiligt ist, gibt Aufschluß über die Orientierungsmechanismen von Zugvögeln in freier Natur.



Milliarden von Singvögeln ziehen zwei Mal jährlich zwischen den Kontinenten hin und her. Verschiedene Experimente legten bislang den Schluss nahe, dass über Nacht fliegende Singvögel möglicherweise die Sterne, die Sonne, das geomagnetische Feld und polarisierte Lichtmuster zur Orientierung nutzen. Doch: Wie nun genau funktioniert die Langstreckennavigation?



Aufschluss gibt jetzt eine Veröffentlichung in der renommierten Wissenschaftszeitschrift "Science", Ausgabe vom 16. April 2004. Drei Forschern - darunter der Nachwuchswissenschaftler Dr. Henrik Mouritsen vom Institut für Biologie und Umweltwissenschaften der Universität Oldenburg - gelang es zu klären, wie die Orientierungsmechanismen bei Zugvögeln in freier Natur funktionieren. Die Wissenschaftler kamen zu einem überraschenden Ergebnis: Die Vögel bedienen sich im Flug eines magnetischen Kompasses. Dieser Kompass beruht offensichtlich nicht auf einer feststehenden magnetischen Ausrichtung in Abhängigkeit vom magnetischen Norden. Stattdessen scheint die magnetische Ausrichtung, die während des Vogelfluges benutzt wird, auf die Richtung des Sonnenuntergangs geeicht zu sein. Die Wissenschaftler überraschte auch, dass Zugvögel in der freien Natur diese Orientierungshilfen auf andere Weise zu nutzen scheinen als unter "Laborbedingungen" im Käfig - eine Erkenntnis, die viele auf Käfigexperimenten beruhenden Ergebnisse relativiert.

Wie kamen die Wissenschaftler zu ihren Erkenntnissen? Das Zusammenspiel von magnetischen, stellaren und durch den Sonnenuntergang bedingten Einflüssen, denen die Vogelzüge in freier Wildnis lebender Singvögel unterliegen, wurde wie folgt untersucht: Die Forscher setzten Nordamerikanische Catharus-Drosseln bei beginnender Dämmerung, kurz vor deren Abflug, im Käfig nach Osten gerichteten Magnetfeldern aus. Später, in der Nacht dann, ließen sie die Vögel frei. Mittels Radiotelemetrie, also Funkfernmessung, verfolgten sie einzelne Tiere während ihrer nächtlichen Wanderung. Dabei machten die Forscher folgende Beobachtung: Anstatt sich nordwärts auszurichten, wie es von den Frühlings-Zugvögeln zu erwarten gewesen wäre, flogen sie jetzt nach Westen. Als sie jedoch in den folgenden Nächten wieder unterwegs waren, fielen dieselben Individuen in ihre nördliche Zugrichtung zurück.

Die Ergebnisse lassen vermuten, dass Catharus-Drosseln - und möglicherweise auch andere Singvögel - bei ihrer Navigation in der freien Natur einen magnetischen Kompass benutzen, der während der Dämmerung geeicht wird. Der Clou: In Abhängigkeit vom Sonnenuntergang richtet sich dieser täglich neu aus. Der einfache Mechanismus bietet eine Erklärung für die bislang unbeantwortete Frage, wie Zug- und Wandervögel ihren magnetischen Kompass auch in Gebieten "nutzen" können, wo magnetischer und geografischer Nordpol stark auseinander fallen. Entsprechend ließe sich erklären, wieso die Vögel den magnetischen Äquator überqueren können, ohne die Orientierung zu verlieren. Beteiligt an diesen Forschungen waren neben Mouritsen die Wissenschaftler Dr. Martin Wikelski von der Princeton University und Dr. William Cochran, Illinois Natural History Survey, USA.

Mouritsen leitet am Institut für Biologie und Umweltwissenschaften der Universität Oldenburg die von der VolkswagenStiftung Anfang 2002 eingerichtete - und mit 1,24 Millionen Euro geförderte - Nachwuchsgruppe "Animal navigation - a search for behavioural and physiological mechanisms". Das Forscherteam beschäftigt sich mit der bei vielen Tierarten bekannten Langstreckennavigation; eine Fähigkeit, die Menschen seit Jahrhunderten fasziniert hat und Wissenschaftler seit Jahrzehnten herausfordert. Nach wie vor etwa ist unklar, wie es einem Schmetterling, dessen Gehirn weniger als 0,02 Gramm wiegt, möglich ist, den Weg zu seinem Tausende Kilometer entfernten Winterquartier zu finden, obwohl er nie zuvor dort war. Auch die Präzision, mit der ein Zugvogel über den Globus navigiert, hat seit jeher den Menschen zur Nachahmung animiert.

Mit diesem Problemkomplex setzen sich Mouritsen und sein Team auseinander. Neben den jetzt veröffentlichten Untersuchungen zur Langstreckennavigation bei Singvögeln nehmen sie zum Beispiel - mit Hilfe eines eigens konstruierten Flugsimulators - verhaltensbiologische und physiologische Studien zur Langstreckennavigation von Monarch-Faltern vor. Des Weiteren versuchen sie, die physiologischen und molekularen Mechanismen zu entschlüsseln, die den Magnetsinn ausmachen. So sollen jene Hirnareale und die beteiligten molekularen Strukturen identifiziert werden, die an der Dekodierung der Magnetorientierung beteiligt sind. Ziel der Nachwuchsgruppe ist es, durch den kombinierten Einsatz von mathematischen Modellen, quantenchemischen Methoden, der Immunocytochemie, der Molekular- und Neurobiologie sowie von Computersimulationen unter Zuhilfenahme von Verhaltensexperimenten und Felddaten ein besseres Verständnis der verhaltensbedingten und physiologischen Mechanismen der Langstreckennavigation von Insekten und Vögeln zu erlangen.

Kontakt: Dr. Henrik Mouritsen, Institut für Biologie und Umweltwissenschaften, Tel.: 0441/798-3081, E-Mail: henrik.mouritsen@uni-oldenburg.de

Gerhard Harms | idw
Weitere Informationen:
http://www.uni-oldenburg.de/presse/mit/2004/078.html

Weitere Berichte zu: Kompass Langstreckennavigation Mouritsen Sonnenuntergang Zugvögel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nano-Ampel zeigt Risiko an
24.04.2018 | Universität Duisburg-Essen

nachricht Resteverwerter im Meeresboden
24.04.2018 | Carl von Ossietzky-Universität Oldenburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

RWI/ISL-Containerumschlag-Index auf hohem Niveau deutlich rückläufig

24.04.2018 | Wirtschaft Finanzen

BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

24.04.2018 | HANNOVER MESSE

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics