Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

4000 Meter unter dem Meer - Tiefseeforschung an Foraminiferen

14.04.2004


Einzeller, die seit dem Erdaltertum auf dem Tiefseeboden leben, so genannte benthische Foraminiferen, lassen Rückschlüsse auf die damaligen Umweltbedingungen zu und tragen zum besseren Verständnis des heutigen Ökosystems der Tiefsee bei. Die Tübinger Biologin Dr. Petra Heinz erforscht die Lebensbedingungen benthischer Foraminiferen durch Laborversuche und in der Tiefsee, 4000 Meter unter dem Meeresspiegel.



Lebensbedingungen von Einzellern liefern Erkenntnisse über das Ökosystem Tiefsee



Sie sind winzig klein. Manche von ihnen kann man mit dem bloßen Auge gerade noch erkennen, andere hingegen sind kaum größer als 30 Mikrometer. Und doch können sie uns wichtige Informationen über Klima und Umweltbedingungen aus der Zeit vor Millionen von Jahren liefern. Die Rede ist von benthischen Tiefsee-Foraminiferen, von Einzellern, die auf und in den oberen Schichten des Tiefseebodens leben. Dort machen sie mancherorts über die Hälfte der Biomasse aus. Wie fossile Funde zeigen, gibt es viele Foraminiferen-Gattungen schon seit dem Kambrium, also seit circa 544 Millionen Jahren. Von ihren heutigen Lebensbedingungen und vor allem vom Einfluss der Umweltbedingungen auf die heutigen Foraminiferen-Faunen lassen sich Rückschlüsse auf die Umweltbedingungen am Fundort der Fossilien zu deren Lebenszeit ziehen. Das ist für Paläontologen und Biologen gleichermaßen interessant, denn über das bedeutende Ökosystem der Tiefsee ist noch wenig bekannt. Die Biologin Dr. Petra Heinz vom Institut für Geowissenschaften der Universität Tübingen hat es sich zur Aufgabe gemacht, die heute noch lebenden Foraminiferen zu erforschen.

Petra Heinz war schon mehrmals zu Felduntersuchungen auf den verschiedenen Ozeanen unterwegs, zum Beispiel dem Arabischen Meer: "Das Arabische Meer eignet sich besonders gut, um den Einfluss von Umweltbedingungen auf die Forams - wie ich sie nenne - zu untersuchen. Dort gibt es starke saisonale Unterschiede und verschiedene Bedingungen auf engem Raum." Durch starke Umwälzungen des Oberflächenwassers während des Nordost-Monsuns von November bis März gelangt regional tieferes, nährstoffreicheres Wasser an die Meeresoberfläche. In der Folge kommt es zu einer Algenblüte. Nach dem Absterben der Algen sinkt dieses organische Material, der so genannte Phytodetritus, dann auf den Meeresboden und dient unter anderem den Foraminiferen als Nahrung. Bei einer starken Zunahme des organischen Materials am Meeresboden nimmt dort gleichzeitig die Sauerstoffkonzentration ab, da es zu Zehrungsprozessen beim Abbau des Materials kommt. Die Einzeller benötigen jedoch Sauerstoff zum Atmen. Einige Arten tolerieren allerdings geringere Sauerstoffkonzentrationen und können ein hohes Nahrungsangebot gut nutzen. Benthische Foraminiferen sind also ein guter Anzeiger um "Biogeochemische Stoff- und Energietransporte in der Tiefsee" zu untersuchen, wie es im Rahmen des gleichnamigen Forschungsverbundprojekts, kurz "BIGSET", geschieht.

Von dem deutschen Forschungsschiff R/V Sonne aus entnahm Petra Heinz nach dem Nordost-Monsun Proben aus 3000 bis 4000 Meter Tiefe an mehreren Stationen. Manche waren vom Monsun und der dadurch verursachten erhöhten Algenbildung stark, andere gar nicht betroffen. Bei der Auswertung der Proben stellte sie fest, dass erhöhte Foraminiferenzahlen mit der gesteigerten Nahrungszufuhr in den vom Monsun betroffenen Gebieten korrelieren. Kleine Foraminiferen (30 bis 125 Mikrometer) traten an diesen Stellen verstärkt auf. Das lässt darauf schließen, dass der Nordost-Monsun die Vermehrung begünstigt. Die Artzusammensetzung und die Vertikalverteilung der Foraminiferen im Tiefseeboden blieben hingegen relativ konstant. Der Nordost-Monsun wirkt also im Wesentlichen auf die Populationsdichte der benthischen Foraminiferen.

Nur welche der vom Monsun bedingten Faktoren lösen diese Reaktionen bei den Einzellern aus? Und wie spielen sie zusammen? "Um das herauszufinden, sind Laboruntersuchungen nötig, weil es hier möglich ist, Sauerstoffgehalt und Nahrungszufuhr unabhängig voneinander zu regulieren. Unter natürlichen Bedingungen ändern sich beide Parameter meist gleichzeitig", erklärt Petra Heinz. Die Proben für ihre Versuche stammten aus dem westlichen Mittelmeer und von der Atlantikküste aus etwa 1000 Metern Wassertiefe: "Große Mengen lebender Foraminiferen aus wesentlich größeren Tiefen heraufzuholen ist nur unter sehr hohem technischen Aufwand möglich, wenn sie nicht sterben sollen. Dazu fehlen uns einfach die Mittel."

Ihre Proben kultivierte Petra Heinz zusammen mit ihrer Kollegin Emmanuelle Geslin in speziellen Aquarien. Nachdem sie entweder Sauerstoff- oder Nahrungszufuhr verändert hatten, untersuchten sie Dichte und Artzusammensetzung der Foraminiferen sowie deren Vertikalverteilung im Tiefsee- beziehungsweise Aquarienboden. In der Natur halten sich die Einzeller zumeist oben auf, wenn das Nahrungsangebot gerade groß ist. Im Labor reagieren sie bei konstant guten Sauerstoffbedingungen auf Nahrungszufuhr, indem sie sich vermehren, aber sie wandern nicht nach oben. Verändert man hingegen die Sauerstoffzufuhr, bewegen sich die meisten Foraminiferenarten in Richtung "Frischluft". Es ist also der Sauerstoff, der die Vertikalverteilung beeinflusst. Allerdings trifft das nicht auf alle Foraminiferenarten gleichermaßen zu: "Die verschiedenen Arten müsste man alle noch einzeln untersuchen."

Über die Bedeutung des Stoffwechsels benthischer Foraminiferen für den Kohlenstoffhaushalt des Meeres weiß man noch sehr wenig. Wie viel Nahrung in Form von organischen Kohlenstoffverbindungen nehmen sie auf? Welchen Platz haben sie im Nahrungsnetz der Tiefsee? Auch diesen Fragen geht Petra Heinz auf den Grund, im wahrsten Sinn des Wortes. In Zusammenarbeit mit japanischen Wissenschaftlern vom "Institute for Frontier Research on Earth Evolution (IFREE)" in Yokosuka, untersuchte sie die Nahrungsaufnahme der Foraminiferen durch Experimente vor Ort, nämlich auf dem Grund der Sagami-Bucht in Zentraljapan, in über 1000 Metern Tiefe.

Für ihre Versuche haben die Forscher zuvor Algen der Art Dunaliella tertiolecta durch eine Anreicherung mit 13C-Kohlenstoff markiert. Diese Algen brachten sie mit Hilfe eines Tauchbootes auf den Tiefseeboden auf. Dazu benutzten sie spezielle Gefäße, die einen Teil des Meeresbodens mit den darin enthaltenen Foraminiferen einschlossen. Anschließend untersuchten sie diese Sedimente und Foraminiferen in verschiedenen Zeitabständen von zwei Stunden bis zu sechs Tagen auf ihren Gehalt an 13C. Dabei stellte sich heraus, dass sich die Foraminiferen sehr schnell über die Nahrung hermachen. Schon nach zwei Tagen hatten die meisten der untersuchten Arten erhebliche Mengen der zugegebenen Algen gefressen. Als Endverbraucher spielen sie also eine große Rolle für die Sedimentierung des Tiefseebodens wie auch für den Kohlenstoffwechsel des Meeres. Benthische Foraminiferen sind demnach nicht nur ein Indikator für die Klima- und Umweltbedingungen von vor Millionen von Jahren, sondern damals wie heute selbst ein einflussreicher Faktor in dem Wechselwirkungsgeflecht des marinen Ökosystems.

Allerdings ist ihre Erforschung mit einem hohen technischen Aufwand und vielen Anstrengungen für die Forscher verbunden. Es gibt nur wenige wissenschaftliche Tauchboote, die in solche Tiefen vordringen können, in Deutschland kein einziges. Petra Heinz, die gute Beziehungen zu ihren japanischen Kollegen pflegt, hatte das Glück, von ihnen eingeladen zu werden: "In dem U-Boot ist es furchtbar eng, man kann sich kaum bewegen, auch wegen der Schutzkleidung. Und so ein Tauchgang dauert bis zu acht Stunden. Man liegt eingezwängt auf seinem Platz neben dem Piloten und schon nach kurzer Zeit beginnt man zu frieren. Aber das wunderbare Erlebnis, in diese fremde, faszinierende Welt zu tauchen, lässt einen alle Strapazen vergessen." Petra Heinz durfte sogar die letzte wissenschaftlich genutzte Tauchfahrt mit dem japanischen Tauchboot "Shinkai 2000" machen, bevor dieses ausgemustert wurde. "Eine große Ehre," sagt sie stolz.
(7493 Zeichen)

Nähere Informationen:

Dr. Petra Heinz
Institut für Geowissenschaften
Sigwartstraße 10
72076 Tübingen
Tel. 07071 / 297 - 4683, Fax -5727
E-Mail: petra.heinz@uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de/uni/qvo/pd/pd.html

Weitere Berichte zu: Alge Foraminiferen Nahrungszufuhr Tiefsee Tiefseeboden Umweltbedingung Ökosystem

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie