Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krankhafte Eiweissablagerung im Reagenzglas studiert

31.03.2004


Ein internationales Forschungsteam unter Leitung des Paul Scherrer Instituts (PSI) und der Universität Manchester hat ein Modellsystem entwickelt, mit dem die Bildung von Eiweissablagerungen im Reagenzglas studiert werden kann. Dazu verwenden die Wissenschaftler ein künstlich hergestelltes Miniprotein, das sich bei erhöhter Temperatur zu Fasern umlagert. Viele unheilbare Krankheiten zeichnen sich durch abgelagerte Proteinfasern aus.


Krankheiten wie Alzheimer, Creutzfeldt-Jakob oder Diabetes Mellitus Typ 2 haben eines gemeinsam: In den betroffenen Organen finden sich abgelagerte Proteinfasern, so genannte amyloide Fibrillen. Im Hirn verstorbener Alzheimerpatienten sind Amyloidfibrillen als "Plaques" nachweisbar, ebenso treten unlösliche Ablagerungen in der Bauchspeicheldrüse von Zuckerkranken auf. Warum sich Proteine falsch falten und ablagern, ist im Detail noch unbekannt.

Um den komplexen Prozess der Faserbildung zu ergründen, hat ein Forschungsteam unter Leitung von Michel Steinmetz vom PSI und von Richard Kammerer von der Universität Manchester ein einfaches Modellsystem entwickelt. Mit einem synthetisch hergestellten Miniprotein können molekulare Umlagerungen im Reagenzglas simuliert und studiert werden. Das dafür eigens konstruierte Miniprotein ist bei niedriger Temperatur stabil und löslich. Wird die Temperatur erhöht, lagert es sich in unlösliche Fibrillen um, die Amyloidfibrillen aus krankem Gewebe täuschend ähnlich sind. Das internationale Team hat seine Arbeit nun in der jüngsten Ausgabe der bekannten US-Fachzeitschrift "PNAS" veröffentlicht.


Einfaches Modellsystem für komplexe Fragen

Mit dem Modellsystem können die Forschenden der Frage nachgehen, welche Faktoren den löslichen Zustand des Miniproteins stabilisieren und welche die fibrillöse Ablagerung begünstigen. Indem sie gezielt Aminosäuren austauschen oder chemisch verändern, können die Wissenschaftler die Kinetik der Umlagerung beeinflussen. So erhalten sie Hinweise darauf, wie die einzelnen Aminosäurenketten in den Amyloidfibrillen gepackt sind. Bisherige Studien lassen darauf schliessen, dass amyloide Fibrillen aus gegenläufig angeordneten Faltblättern bestehen und dass ihre Bildung auf gewissen Wechselwirkungen zwischen wasserabweisenden Aminosäuren beruht.

Bekannt ist, dass Faktoren wie Genmutation, Modifikation von Aminosäuren oder Prozesse des Alterns zu den amyloiden Ablagerungen führen, die mit den uns bekannten Krankheiten einhergehen. Als vereinfachte Miniaturausgabe eines echten und komplexen Proteins hat das Modellsystem den entscheidenden Vorteil, den Prozess der Umlagerung im Reagenzglas immer noch relativ präzise wiederzugeben. Somit können die Forschenden verschiedene Faktoren gezielt und physiologisch relevant auf ihre Effekte hin testen - ein wichtiger Mosaikstein hin zum bessern Verständnis vieler bisher unheilbarer Leiden.


Quelle: Richard A. Kammerer, Universität Manchester; Michel O. Steinmetz, PSI, et al. PNAS (Proceedings of the National Academy of Sciences of the USA), 2004, Vol. 101, No. 14, S. 4435 - 4440.
Auf dem Web: www.pnas.org


Für weitere Auskünfte:
Dr. Michel Steinmetz, Biomolekulare Forschung, PSI
Tel. +41 (0)56 310 47 54
michel.steinmetz@psi.ch

Beat Gerber | PSI
Weitere Informationen:
http://www.psi.ch/news_events/news_events.shtml
http://www.pnas.org

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics