Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Den Baum trotz der Blätter sehen - Wie Fledermäuse komplexe 3D-Strukturen erkennen

31.03.2004


Echoortende Fledermäuse beschallen Objekte in ihrer Umgebung mit Ultraschalllauten und werten die von den Objektoberflächen reflektierten Echos aus. Auf diese Weise erhalten sie in völliger Dunkelheit nicht nur Informationen über die Position eines Objekts im Raum, sondern auch über dessen dreidimensionale Struktur. Bislang war allerdings unbekannt, ob Fledermäuse auch chaotische Echos von großen, komplexen Objekten - etwa Bäume und andere Vegetation - sinnvoll verarbeiten können. Das Team um Privatdozent Dr. Lutz Wiegrebe von der Abteilung Neurobiologie des Departments Biologie II der LMU konnte jetzt zeigen, dass Fledermäuse solche chaotischen Echos anhand eines statistischen Parameters unterscheiden und in Klassen einteilen (PNAS, online-Ausgabe). "Diese Fähigkeit gibt den Fledermäusen die Möglichkeit, große, komplexe Objekte wie Bäume in Kategorien wie "Laubbaum" und "Nadelbaum" einzuordnen", berichtet Wiegrebe.



Das Echo, durch das ein Objekt beschrieben wird, besteht aus den Einzelreflexionen des Echoortungslautes von den Oberflächen des Objekts. Beschallt eine Fledermaus ein kleines Objekt mit wenigen Oberflächen, empfängt sie nur wenige Einzelreflexionen, die dem Echo ein geordnetes, charakteristisches Zeit- und Frequenzmuster aufprägen. Anhand dieser Muster können einfache Objekte unterschieden und klassifiziert werden. Anders ist es bei großen, komplexen Objekten. Bäume etwa verfügen mit ihren Blättern über unzählige Reflektoren, die noch dazu chaotisch angeordnet sind. Das Echo setzt sich also aus einem Chaos von Tausenden von Einzelreflektionen zusammen - eine von jedem Blatt.



Es ist leicht vorstellbar, dass ein solches Echo keine geordneten Zeit- oder Frequenzmuster enthält, die eine zuverlässige Erkennung erlauben würden. Zudem ist es höchst unwahrscheinlich, dass eine Fledermaus vom selben Baum zweimal dasselbe Echo empfängt, da die Blätter ihre Position und Ausrichtung zum Beispiel durch Windbewegung ständig verändern. Trotzdem können die Tiere diesem akustischen Chaos Herr werden und dann die Bäume und Sträucher als Orientierungshilfe verwenden. Dabei können statistische Eigenschaften des Echos helfen. Ein Beispiel dafür ist seine "Rauigkeit". Die Nadeln eines Nadelbaums etwa wirken wie sehr viele kleine, dicht gepackte Reflektoren. Das Echo setzt sich also aus sehr vielen leisen Einzelreflexionen mit geringem zeitlichen Abstand zusammen: Es hört sich "glatt" an. Ein Laubbaum dagegen präsentiert weniger und größere Reflektoren, die nicht so dicht gepackt sind. Das Echo besteht aus weniger und lauteren Einzelreflexionen, es hört sich "rau" an. Diese statistische Eigenschaft ist charakteristisch für bestimmte Vegetationstypen und ließe sich zur Unterscheidung und Klassifikation heranziehen.

Die Wissenschaftler untersuchten, ob Fledermäuse der Art Phyllostomus discolor in der Lage sind, diese statistische Echoeigenschaft auszuwerten. Zunächst erlernten die Fledermäuse, Echos von zwei bestimmten Phantomzielen mit unterschiedlicher Rauigkeit zu unterscheiden. "Wir haben Phantomziele aus bis zu 4000 Einzelreflexionen zusammengestellt, die die akustischen Eigenschaften verschiedener Vegetationstypen repräsentierten", berichtet Wiegrebe. Diese Phantomziele wurden dann den Tieren in einem Rückspielexperiment präsentiert: Von jedem ausgesandten Ortungslaut der Fledermäuse wurde ein computergeneriertes Echo von einem der Phantomziele zurückgespielt. "Dabei hat sich gezeigt, dass die Tiere spontan in der Lage waren, chaotische Echos von unbekannten Phantomzielen anhand ihrer Rauigkeit zu unterscheiden und in Klassen einzuteilen", so Wiegrebe.

Die Fähigkeit, chaotische Echos anhand eines statistischen Parameters zu analysieren, gibt den Fledermäusen die Möglichkeit, große, komplexe Objekte wie Bäume zu unterscheiden und in Klassen wie "Laubbaum" und "Nadelbaum" einzuordnen, ohne sich individuelle Zeit- oder Frequenzmuster merken zu müssen. Somit bildet diese statistische Echoanalyse die entscheidende Grundlage für die Nutzung von Vegetation als Landmarken für eine echoortungsgestützte Orientierung. (suwe)

Ansprechpartner:

PD Dr. Lutz Wiegrebe
Sektion Neurobiologie, Department Biologie II der LMU
Tel.: +49 89 5902 609
Fax: +49 89 5902 450
E-Mail: wiegrebe@zi.biologie.uni-muenchen.de

Luise Dirscherl | idw

Weitere Berichte zu: Echo Einzelreflexionen Fledermaus Frequenzmuster Phantomziele Reflektor

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Immunabwehr ohne Kollateralschaden
23.01.2017 | Universität Basel

nachricht Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens
23.01.2017 | Verband Biologie, Biowissenschaften und Biomedizin in Deutschland e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie