Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In breiter Front gegen aggressive Viren

26.03.2004


Erst wenn viele Zellkerne zu Fabriken für die Massenproduktion von Viren geworden sind, die wiederum ausschwärmen, um neue Zellen zu befallen, können die in der Regel harmlosen Viren zu gefährlichen Krankheitserregern werden. Eine Gruppe von Enzymen, die bei Herpesviren diese rasante Vermehrung in Gang halten, nutzt das Institut für Virologie der Universität Erlangen-Nürnberg (Leitung: Prof. Dr. Bernhard Fleckenstein) umgekehrt als Ansatzpunkt zur Blockade. Die Zusammenarbeit von Prof. Dr. Thomas Stamminger und Priv.-Doz. Dr. Manfred Marschall mit der Axxima Pharmaceuticals AG in München ist nun so weit gediehen, dass die Untersuchungen auf eine breite Grundlage gestellt werden können. Eine Million Euro investiert die Bayerische Forschungsstiftung in das neue dreijährige Kooperationsprojekt, das eine Alternative zu den bisher mit deutlichen Nachteilen behafteten Therapiemöglichkeiten verspricht.


Durch die Cytomegalovirus-Infektion veränderte Zellen (sogenannte Eulenaugenzellen) im Gewebsverband.



Der Sammelname Proteinkinasen umfasst Enzyme, die andere Proteine aktivieren oder auch deaktivieren können. In einer Kette ineinandergreifender Funktionen versetzen sie diese Proteine in einen bestimmten Aktivitätszustand, indem sie einen Phosphatrest anheften. Bei Herpesviren wurden Proteinkinasen entdeckt, die im Mechanismus der Vermehrung ein wichtiges Zwischenglied bilden. Werden sie daran gehindert, ihre Botschaft weiterzureichen, stockt das gesamte Räderwerk. Insbesondere ein Enzym, das die Bezeichnung pUL97 trägt, hat sich als lohnendes Angriffsziel für eineChemotherapie erwiesen.



Chemotherapie erwiesen. Dieses Enzym kommt beim humanen Cytomegalovirus vor, einem Vertreter der Herpesviren. Die Hälfte der Bevölkerung Mitteleuropas ist mit diesem Erreger infiziert, doch merken die meisten Betroffenen davon nichts.

Bei einer Schwäche des Immunsystems wird die Virusinfektion jedoch zum Risiko. Dies trifft vor allem AIDS-Erkrankte und Transplantationspatienten. 60 Prozent aller klinischen Komplikationen beim Organersatz sind auf das Cytomegalovirus zurückzuführen. Gefährdet sind außerdem Neugeborene, vor allem dann, wenn die Mutter während der Schwangerschaft erstmals infiziert wird und das ungeborene Kind sich im Mutterleib ansteckt. In Extremfällen ist das Leben des Kindes bedroht. Gerade für solche Fälle gibt es keine befriedigende Therapie, da die zur Zeit verfügbaren Medikamente erhebliche Nebenwirkungen verursachen. Neue Strategien werden deshalb dringend benötigt.

Die Entwicklung eines neuen Medikamentes ist ein mehrstufiger Prozess. Ist ein mögliches Zielmolekül erkannt und beschrieben, werden Substanzen gesucht, die exakt an dieses Protein binden und es hindern, seine Funktion auszuführen. Parallel dazu läuft die Suche nach strukturellen Ähnlichkeiten zu Molekülen, für die bereits bindende Substanzen identifiziert wurden. Die Voraussetzungen für ein solch groß angelegtes, zweigleisiges Vorgehen sind durch die bisherigen Untersuchungen am Institut für Virologie in Erlangen gegeben. Das Medizinalchemie-Programm, das auf optimale Therapie angelegt ist, kann damit starten.

8.000 Substanzen, die in Frage kommen, sind in einem Screening bereits auf ihre Fähigkeit getestet worden, das Enzym pUL97 zu hemmen. Die Wirkstoffe ließen sich in deutlich unterscheidbare Klassen einteilen. Für jede Klasse kann damit eine charakteristische Leitsubstanz gewählt werden, ein aussichtsreicher Startpunkt für die Entwicklung des bestmöglichen Medikaments. Der zweite, ergänzende Ansatz, der Verfahren der Bioinformatik einsetzt, verspricht ebenfalls Erfolg. Über 30 Proteinkinasen sind in ihrer Struktur bekannt und stehen zum Vergleich mit dem Cytomegalovirus-Enzym zur Verfügung. Das bedeutet eine gute Ausgangslage für das Drug Design, das gezielte Zuschneiden und Zurechtfeilen eines Wirkstoffs auf bestimmte erwünschte Resultate.

Da das humane Cytomegalovirus Tiere nicht befällt, waren Tests von Medikamenten bisher nur beschränkt aussagekräftig. In dem neuen Projekt soll dieses Hindernis durch einen Genaustausch zwischen Ratten- und Humancytomegaloviren überwunden werden. Ersetzt wird der genetische Code für die Proteinkinasen, die bei den zwei Virus-Typen funktionell sehr ähnlich sind. Mit Hilfe dieses neuartigen Tiermodells sollte die Entwicklung eines wirkungsvollen Medikaments bis zur Marktreife zielstrebig von statten gehen.

Weitere Informationen: Institut für Klinische und Molekulare Virologie
Prof. Dr. Thomas Stamminger, Tel.: 09131/85 -26783, a href=mailto:Thomas.Stamminger@viro.med.uni-erlangen.de>Thomas.Stamminger@viro.med.uni-erlangen.de
PD Dr. Manfred Marschall, Tel.: 09131/85-26089, a href=mailto:Manfred.Marschall@viro.med.uni-erlangen.de>Manfred.Marschall@viro.med.uni-erlangen.de

Gertraud Pickel | idw
Weitere Informationen:
http://www.uni-erlangen.de

Weitere Berichte zu: Cytomegalovirus Enzym Herpesviren Medikament Protein Proteinkinase Virus

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise