Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Regler der Myelin-Produktion im Nervensystem entdeckt

26.03.2004


Wissenschaftler des Max-Planck-Instituts für experimentelle Medizin haben einen molekularen Wachstumsfaktor entdeckt, der das Ausmaß der Myelinbildung bei Nervenzellen steuert


In transgenen Mäusen wurde die Menge des axonalen Neuregulin-1-Signals durch eine Überexpression dieses Gens in Neuronen experimentell erhöht. Diese Fehlinformation führt zu einem übermäßigen Wachstum der Schwannzellen und einer pathologisch überhöhten Myelinbildung, wie sie in dieser elektronenmikroskopischen Aufnahme des Ischias-Nervs zu sehen ist.
Bild: Max-Planck-Institut für experimentelle Medizin



Im Nervensystem von Vertebraten ist die Umhüllung der Nervenfasern durch so genannte "Myelinscheiden" essentiell für die schnelle und akkurate Fortleitung von Nervenimpulsen. Die Dicke dieser Myelin-Schichten ist im gesunden Organismus stets proportional zur Stärke der Nervenfaser. Ein Wissenschaftlerteam des Max-Planck-Instituts für experimentelle Medizin um Prof. Klaus Armin Nave hat jetzt bei Mäusen entdeckt, dass diese Proportionalität über den so genannten axonalen Neuregulin-1-Faktor (Nrg1) reguliert wird. Je nachdem, wie viel von diesem Signal auf der Oberfläche von Nervenzellen exprimiert wird, desto stärker oder schwächer wachsen die Schwannschen Zellen, die die Myelin-Schutzschicht um die Nervenfasern bilden (Science, 26. März 2004). Die Entdeckung dieses Wachstumsfaktors ist von grundsätzlicher Bedeutung für ein besseres Verständnis körpereigener Reparaturprozesse und insbesondere für Therapien demyelinisierender Erkrankungen des Menschen, wie der Multiplen Sklerose.



Myelin funktioniert in unserem Nervensystem als ein elektrischer Isolator für die Ionenströme im Nervenzellfortsatz (Axon). Es ist damit unmittelbar für die hohe Geschwindigkeit der Reizweiterleitung verantwortlich. Myelinscheiden entstehen durch einen Wachstumsprozess hochspezialisierter Gliazellen sowohl entlang dünner als auch dicker Axone. Im peripheren Nervensystem sind es Schwannzellen, die sich spiralförmig um das Axon wickeln. Die Dicke der dabei entstehenden Myelinscheide ist erstaunlicherweise immer proportional zur Dicke des umwickelten Axons selbst. Seit fast einhundert Jahren stellt man sich deshalb bereits die Frage, auf welche Weise die Schwannzellen "wissen" können, ob sie gerade ein dickes oder ein dünnes Axon umwickeln, um dann entsprechend unterschiedlich stark wachsen.

Wissenschaftlern am Max-Planck-Institut für experimentelle Medizin ist es nun gelungen, mit der Hilfe von transgenen Mäusen und Mausmutanten einen wichtigen Mechanismus dieser Axon-Glia-Kommunikation aufzudecken. Danach exprimieren Nervenzellen (Neurone) einen Wachstumsfaktor, Neuregulin-1, und präsentieren diesen auf der Oberfläche ihrer Nervenenden (Axone) den Myelin-bildenden Schwannzellen, den diese dann durch Rezeptorproteine erkennen. Die Forscher stellten fest, dass es die Menge des Neuregulin-1-Faktors ist, die den Schwannzellen auf biochemischem Weg sagt, welchen Durchmesser das zu umwickelnde Axon hat. Denn dicke Axone haben eine größere Oberfläche mit mehr Neuregulin-1 als dünnere Nervenenden.

Verringert man nun in einer Mausmutante das axonale Neuregulin-1-Signal experimentell auf die Hälfte, so erhalten die Myelin-bildenden Schwanzellen falsche Informationen über den Durchmesser des Axons. Tatsächlich bilden sie in den Experimenten dann weniger Myelin, eben nur für ein kleinkalibrigeres Axon. Dadurch aber ist das dicke Axon schlechter isoliert und die Nervenleitgeschwindigkeit in dieser Mausmutante geht zurück.

Umgekehrt beobachteten die Max-Planck-Wissenschaftler genau das Gegenteil in transgenen Mäusen, die sie durch Überexpression dieses Gens dazu gebracht hatten, eine überhöhte Menge des axonalen Neuregulin-1-Signals in ihren Neuronen zu produzieren. Diese Fehlinformation führte zu einem übermäßigen Wachstum der Schwannzellen und einer pathologisch überhöhten Myelinbildung (vgl. Abb. 1), wie man sie in Mäusen normalerweise nicht beobachten kann.

Die Forscher vermuten, dass sich auch im zentralen Nervensystem ein ähnliches Signalsystem zwischen Axonen und Gliazellen entwickelt hat und die Myelinbildung steuert. Das zu untersuchen ist Gegenstand ihrer nächsten Projekte.

Michael Sereda, Neurologe am Klinikum der Universität Göttingen und einer der Autoren der Studie, sagt: "Die Entdeckung dieses Wachstumsfaktors, der den Umfang der Myelinbildung im Nervensystem steuert, ist von grundlegender Bedeutung und weckt auch neue Hoffnungen. Weitere Experimente sollen zeigen, ob man mit Neuregulin gezielt Reparaturprozesse im kranken Nervensystem unterstützen und für Therapien, zum Beispiel bei Multipler Sklerose, einsetzen kann. Doch bis dahin ist es noch ein langer Weg."

Weitere Informationen erhalten Sie von:

Prof. Klaus-Armin Nave
Max-Planck-Institut für experimentelle Medizin, Göttingen
Tel.: 0551 3899-757, Fax: -758
E-Mail: nave@em.mpg.de

Dr. Michael W. Sereda, MD
Max-Planck-Institut für experimentelle Medizin und Universität Göttingen, Göttingen
Tel.: 0551 3899-732/745, Fax: -758
E-Mail: sereda@em.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Axon Myelinbildung Mäuse Nervensystem Schwannzellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik