Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Regler der Myelin-Produktion im Nervensystem entdeckt

26.03.2004


Wissenschaftler des Max-Planck-Instituts für experimentelle Medizin haben einen molekularen Wachstumsfaktor entdeckt, der das Ausmaß der Myelinbildung bei Nervenzellen steuert


In transgenen Mäusen wurde die Menge des axonalen Neuregulin-1-Signals durch eine Überexpression dieses Gens in Neuronen experimentell erhöht. Diese Fehlinformation führt zu einem übermäßigen Wachstum der Schwannzellen und einer pathologisch überhöhten Myelinbildung, wie sie in dieser elektronenmikroskopischen Aufnahme des Ischias-Nervs zu sehen ist.
Bild: Max-Planck-Institut für experimentelle Medizin



Im Nervensystem von Vertebraten ist die Umhüllung der Nervenfasern durch so genannte "Myelinscheiden" essentiell für die schnelle und akkurate Fortleitung von Nervenimpulsen. Die Dicke dieser Myelin-Schichten ist im gesunden Organismus stets proportional zur Stärke der Nervenfaser. Ein Wissenschaftlerteam des Max-Planck-Instituts für experimentelle Medizin um Prof. Klaus Armin Nave hat jetzt bei Mäusen entdeckt, dass diese Proportionalität über den so genannten axonalen Neuregulin-1-Faktor (Nrg1) reguliert wird. Je nachdem, wie viel von diesem Signal auf der Oberfläche von Nervenzellen exprimiert wird, desto stärker oder schwächer wachsen die Schwannschen Zellen, die die Myelin-Schutzschicht um die Nervenfasern bilden (Science, 26. März 2004). Die Entdeckung dieses Wachstumsfaktors ist von grundsätzlicher Bedeutung für ein besseres Verständnis körpereigener Reparaturprozesse und insbesondere für Therapien demyelinisierender Erkrankungen des Menschen, wie der Multiplen Sklerose.



Myelin funktioniert in unserem Nervensystem als ein elektrischer Isolator für die Ionenströme im Nervenzellfortsatz (Axon). Es ist damit unmittelbar für die hohe Geschwindigkeit der Reizweiterleitung verantwortlich. Myelinscheiden entstehen durch einen Wachstumsprozess hochspezialisierter Gliazellen sowohl entlang dünner als auch dicker Axone. Im peripheren Nervensystem sind es Schwannzellen, die sich spiralförmig um das Axon wickeln. Die Dicke der dabei entstehenden Myelinscheide ist erstaunlicherweise immer proportional zur Dicke des umwickelten Axons selbst. Seit fast einhundert Jahren stellt man sich deshalb bereits die Frage, auf welche Weise die Schwannzellen "wissen" können, ob sie gerade ein dickes oder ein dünnes Axon umwickeln, um dann entsprechend unterschiedlich stark wachsen.

Wissenschaftlern am Max-Planck-Institut für experimentelle Medizin ist es nun gelungen, mit der Hilfe von transgenen Mäusen und Mausmutanten einen wichtigen Mechanismus dieser Axon-Glia-Kommunikation aufzudecken. Danach exprimieren Nervenzellen (Neurone) einen Wachstumsfaktor, Neuregulin-1, und präsentieren diesen auf der Oberfläche ihrer Nervenenden (Axone) den Myelin-bildenden Schwannzellen, den diese dann durch Rezeptorproteine erkennen. Die Forscher stellten fest, dass es die Menge des Neuregulin-1-Faktors ist, die den Schwannzellen auf biochemischem Weg sagt, welchen Durchmesser das zu umwickelnde Axon hat. Denn dicke Axone haben eine größere Oberfläche mit mehr Neuregulin-1 als dünnere Nervenenden.

Verringert man nun in einer Mausmutante das axonale Neuregulin-1-Signal experimentell auf die Hälfte, so erhalten die Myelin-bildenden Schwanzellen falsche Informationen über den Durchmesser des Axons. Tatsächlich bilden sie in den Experimenten dann weniger Myelin, eben nur für ein kleinkalibrigeres Axon. Dadurch aber ist das dicke Axon schlechter isoliert und die Nervenleitgeschwindigkeit in dieser Mausmutante geht zurück.

Umgekehrt beobachteten die Max-Planck-Wissenschaftler genau das Gegenteil in transgenen Mäusen, die sie durch Überexpression dieses Gens dazu gebracht hatten, eine überhöhte Menge des axonalen Neuregulin-1-Signals in ihren Neuronen zu produzieren. Diese Fehlinformation führte zu einem übermäßigen Wachstum der Schwannzellen und einer pathologisch überhöhten Myelinbildung (vgl. Abb. 1), wie man sie in Mäusen normalerweise nicht beobachten kann.

Die Forscher vermuten, dass sich auch im zentralen Nervensystem ein ähnliches Signalsystem zwischen Axonen und Gliazellen entwickelt hat und die Myelinbildung steuert. Das zu untersuchen ist Gegenstand ihrer nächsten Projekte.

Michael Sereda, Neurologe am Klinikum der Universität Göttingen und einer der Autoren der Studie, sagt: "Die Entdeckung dieses Wachstumsfaktors, der den Umfang der Myelinbildung im Nervensystem steuert, ist von grundlegender Bedeutung und weckt auch neue Hoffnungen. Weitere Experimente sollen zeigen, ob man mit Neuregulin gezielt Reparaturprozesse im kranken Nervensystem unterstützen und für Therapien, zum Beispiel bei Multipler Sklerose, einsetzen kann. Doch bis dahin ist es noch ein langer Weg."

Weitere Informationen erhalten Sie von:

Prof. Klaus-Armin Nave
Max-Planck-Institut für experimentelle Medizin, Göttingen
Tel.: 0551 3899-757, Fax: -758
E-Mail: nave@em.mpg.de

Dr. Michael W. Sereda, MD
Max-Planck-Institut für experimentelle Medizin und Universität Göttingen, Göttingen
Tel.: 0551 3899-732/745, Fax: -758
E-Mail: sereda@em.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Axon Myelinbildung Mäuse Nervensystem Schwannzellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten