Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Regler der Myelin-Produktion im Nervensystem entdeckt

26.03.2004


Wissenschaftler des Max-Planck-Instituts für experimentelle Medizin haben einen molekularen Wachstumsfaktor entdeckt, der das Ausmaß der Myelinbildung bei Nervenzellen steuert


In transgenen Mäusen wurde die Menge des axonalen Neuregulin-1-Signals durch eine Überexpression dieses Gens in Neuronen experimentell erhöht. Diese Fehlinformation führt zu einem übermäßigen Wachstum der Schwannzellen und einer pathologisch überhöhten Myelinbildung, wie sie in dieser elektronenmikroskopischen Aufnahme des Ischias-Nervs zu sehen ist.
Bild: Max-Planck-Institut für experimentelle Medizin



Im Nervensystem von Vertebraten ist die Umhüllung der Nervenfasern durch so genannte "Myelinscheiden" essentiell für die schnelle und akkurate Fortleitung von Nervenimpulsen. Die Dicke dieser Myelin-Schichten ist im gesunden Organismus stets proportional zur Stärke der Nervenfaser. Ein Wissenschaftlerteam des Max-Planck-Instituts für experimentelle Medizin um Prof. Klaus Armin Nave hat jetzt bei Mäusen entdeckt, dass diese Proportionalität über den so genannten axonalen Neuregulin-1-Faktor (Nrg1) reguliert wird. Je nachdem, wie viel von diesem Signal auf der Oberfläche von Nervenzellen exprimiert wird, desto stärker oder schwächer wachsen die Schwannschen Zellen, die die Myelin-Schutzschicht um die Nervenfasern bilden (Science, 26. März 2004). Die Entdeckung dieses Wachstumsfaktors ist von grundsätzlicher Bedeutung für ein besseres Verständnis körpereigener Reparaturprozesse und insbesondere für Therapien demyelinisierender Erkrankungen des Menschen, wie der Multiplen Sklerose.



Myelin funktioniert in unserem Nervensystem als ein elektrischer Isolator für die Ionenströme im Nervenzellfortsatz (Axon). Es ist damit unmittelbar für die hohe Geschwindigkeit der Reizweiterleitung verantwortlich. Myelinscheiden entstehen durch einen Wachstumsprozess hochspezialisierter Gliazellen sowohl entlang dünner als auch dicker Axone. Im peripheren Nervensystem sind es Schwannzellen, die sich spiralförmig um das Axon wickeln. Die Dicke der dabei entstehenden Myelinscheide ist erstaunlicherweise immer proportional zur Dicke des umwickelten Axons selbst. Seit fast einhundert Jahren stellt man sich deshalb bereits die Frage, auf welche Weise die Schwannzellen "wissen" können, ob sie gerade ein dickes oder ein dünnes Axon umwickeln, um dann entsprechend unterschiedlich stark wachsen.

Wissenschaftlern am Max-Planck-Institut für experimentelle Medizin ist es nun gelungen, mit der Hilfe von transgenen Mäusen und Mausmutanten einen wichtigen Mechanismus dieser Axon-Glia-Kommunikation aufzudecken. Danach exprimieren Nervenzellen (Neurone) einen Wachstumsfaktor, Neuregulin-1, und präsentieren diesen auf der Oberfläche ihrer Nervenenden (Axone) den Myelin-bildenden Schwannzellen, den diese dann durch Rezeptorproteine erkennen. Die Forscher stellten fest, dass es die Menge des Neuregulin-1-Faktors ist, die den Schwannzellen auf biochemischem Weg sagt, welchen Durchmesser das zu umwickelnde Axon hat. Denn dicke Axone haben eine größere Oberfläche mit mehr Neuregulin-1 als dünnere Nervenenden.

Verringert man nun in einer Mausmutante das axonale Neuregulin-1-Signal experimentell auf die Hälfte, so erhalten die Myelin-bildenden Schwanzellen falsche Informationen über den Durchmesser des Axons. Tatsächlich bilden sie in den Experimenten dann weniger Myelin, eben nur für ein kleinkalibrigeres Axon. Dadurch aber ist das dicke Axon schlechter isoliert und die Nervenleitgeschwindigkeit in dieser Mausmutante geht zurück.

Umgekehrt beobachteten die Max-Planck-Wissenschaftler genau das Gegenteil in transgenen Mäusen, die sie durch Überexpression dieses Gens dazu gebracht hatten, eine überhöhte Menge des axonalen Neuregulin-1-Signals in ihren Neuronen zu produzieren. Diese Fehlinformation führte zu einem übermäßigen Wachstum der Schwannzellen und einer pathologisch überhöhten Myelinbildung (vgl. Abb. 1), wie man sie in Mäusen normalerweise nicht beobachten kann.

Die Forscher vermuten, dass sich auch im zentralen Nervensystem ein ähnliches Signalsystem zwischen Axonen und Gliazellen entwickelt hat und die Myelinbildung steuert. Das zu untersuchen ist Gegenstand ihrer nächsten Projekte.

Michael Sereda, Neurologe am Klinikum der Universität Göttingen und einer der Autoren der Studie, sagt: "Die Entdeckung dieses Wachstumsfaktors, der den Umfang der Myelinbildung im Nervensystem steuert, ist von grundlegender Bedeutung und weckt auch neue Hoffnungen. Weitere Experimente sollen zeigen, ob man mit Neuregulin gezielt Reparaturprozesse im kranken Nervensystem unterstützen und für Therapien, zum Beispiel bei Multipler Sklerose, einsetzen kann. Doch bis dahin ist es noch ein langer Weg."

Weitere Informationen erhalten Sie von:

Prof. Klaus-Armin Nave
Max-Planck-Institut für experimentelle Medizin, Göttingen
Tel.: 0551 3899-757, Fax: -758
E-Mail: nave@em.mpg.de

Dr. Michael W. Sereda, MD
Max-Planck-Institut für experimentelle Medizin und Universität Göttingen, Göttingen
Tel.: 0551 3899-732/745, Fax: -758
E-Mail: sereda@em.mpg.de

Dr. Bernd Wirsing | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Axon Myelinbildung Mäuse Nervensystem Schwannzellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Mechanismus der Gen-Inaktivierung könnte vor Altern und Krebs schützen
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

nachricht Alge im Eismeer - Genom einer antarktischen Meeresalge entschlüsselt
23.02.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2017

23.02.2017 | Veranstaltungen

Wie werden wir gesund alt? - Alternsforscher tagen auf interdisziplinärem Symposium in Magdeburg

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Heinz Maier-Leibnitz-Preise 2017: DFG und BMBF zeichnen vier Forscherinnen und sechs Forscher aus

23.02.2017 | Förderungen Preise

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungsnachrichten

Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor

23.02.2017 | Physik Astronomie