Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie erneuern sich Organe? GSF gründet Institut für Stammzellforschung

26.03.2004


Dr. Magdalena Götz, Leiterin des neu gegründeten Instituts für Stammzellforschung (Foto: GSF)

Gleichgültig, ob der Zelltod durch Altersschwäche oder durch Verletzungen eintritt: In den meisten Organen stehen Stammzellen als Ersatztteillager zur Verfügung. Mit ihrer Hilfe kann unser Körper verletztes Gewebe und abgestorbene Zellen ersetzen, da Stammzellen die Fähigkeit haben, sich weiter zu teilen und alle Zellen eines Organs wieder zu bilden - diese Eigenschaft macht sie auch zu einem Hoffnungsträger für die Entwicklung neuer Therapien in der Medizin. Als erste Einrichtung innerhalb der Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren hat die GSF jetzt ein eigenes Institut für Stammzellforschung gegründet. Ziel des neuen Institutes wird es sein, Stammzellen, sowohl während der Entwicklung als auch im ausgewachsenen Gewebe molekular und zellbiologisch zu charakterisieren. Diese Forschung hat langfristig zum Ziel, körpereigene Reparaturmechanismen zu aktivieren.

Der Forschungsschwerpunkt der Leiterin des neuen Instituts, PD Dr. Magdalena Götz, liegt auf der Bildung und Regeneration von Nervenzellen: Das Gehirn aller Säugetiere ist im Unterschied zu anderen Organen nur bedingt reparaturfähig, denn abgestorbene Nervenzellen werden nicht regeneriert. Stattdessen muss ihr Ausfall kompensiert werden, indem andere Nervenzellen ihre Aufgaben mit übernehmen. Götz interessiert sich besonders für die Frage, warum ausgerechnet diese Zellen nicht ersetzt werden, und wie ihre Neubildung angeregt werden könnte.

In einem ersten Schritt gelang der Entwicklungsbiologin im Mausmodell der Nachweis, dass Stammzellen während der Entwicklung und im adulten Gehirn sehr ähnlich sind - es sind nämlich in beiden Fällen Gliazellen. Die sogenannten radialen Gliazellen treten nur während der Entwicklung des Gehirns auf und wurden lange Zeit ausschließlich als Vorläufer für ausdifferenzierte Gliazellen betrachtet, denen im Gehirn vor allem unterstützende Funktionen zugeschrieben werden. Götz wies nach, dass sich aus radialen Gliazellen während der Gehirnentwicklung auch Nervenzellen bilden, es sich also um Stammzellen handelt. "Interessanterweise gibt es auch im erwachsenen Gehirn der Maus neurale Stammzellen, die als Gliazellen identifiziert wurden", erzählt Götz, schränkt aber ein: "Trotzdem gibt es nur eine sehr beschränkte Neubildung von Nervenzellen im erwachsenen Gehirn, da diese adulten Stammzellen auf kleine Regionen des Gehirns beschränkt sind."

Zu verstehen, warum dies der Fall ist, und wie Stammzellen in anderen Gehirnregionen angeregt werden könnten, ist eine der wichtigsten Voraussetzungen, um die Regeneration von Nervenzellen zu erreichen. Hier ist auch der Vergleich mit anderen Organen wie z.B dem Blutsystem sehr interessant, denn das Blutsystem erneuert seine Zellen ständig. Aus diesem Grund werden am Institut für Stammzellforschung auch mehrere Nachwuchsgruppen angesiedelt sein, die Stammzellen anderer Organe unter die Lupe nehmen. Der Schwerpunkt aller Arbeiten wird auf adulten, tierischen Stammzellen liegen, die helfen sollen, körpereigene Reparaturmechanismen zu identifizieren.

"Ich denke, dass auf lange Sicht gesehen gerade für das Gehirn und das Zentrale Nervensystem die Stammzelltransplantation eine wichtige Therapieform werden kann, denn bisher können prinzipiell abgestorbene Neurone fast nicht ersetzt werden", blickt Götz in die Zukunft. Gelingt es, die Gliazellen im erwachsenen Gehirn wieder zur Bildung neuer Neuronen anzuregen, könnten beispielsweise Schlaganfallpatienten wieder hoffen, die bisher Ausfälle nur durch das Training intakt gebliebener Hirnbereiche kompensieren können. Allerdings wird dies noch einige Zeit dauern, wie Götz betont: "Wir befinden uns im Stadium der Grundlagenforschung und ich halte es für sehr wichtig, zuerst die bisher noch viel zu wenig verstandenen Grundlagen und Mechanismen aufzuklären."

Gertrud Aßmann | idw
Weitere Informationen:
http://www.gsf.de/Aktuelles/Presse/stammzellforschung.phtml

Weitere Berichte zu: Gliazelle Nervenzelle Organ Stammzelle Stammzellforschung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie

Speicherdauer von Qubits für Quantencomputer weiter verbessert

09.12.2016 | Physik Astronomie