Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Protein & Zucker - ein bewährtes Überlebensrezept bei Bakterien

22.03.2004


Widrige Lebensbedingungen können Auswirkungen auf die Anordnung wichtiger Bakteriengene haben. ForscherInnen der Universität für Bodenkultur Wien haben bei drei an erhöhte Temperaturen angepassten Bakterienstämmen festgestellt, dass Gene für eine optimale Umweltanpassung direkt hintereinander auf dem Genom liegen. Die Gene bewirken durch das Anhängen von Zuckern die gezielte Veränderung von Proteinen, die einen Schutzmantel aufbauen. In zwei vom Wissenschaftsfonds FWF geförderten Projekten werden derzeit Einzelheiten dieses Prozesses untersucht. Ergebnisse der Studien könnten auch die Herstellung optimierter Proteine für den biotechnologischen und medizinischen Einsatz ermöglichen.


Elektronenmikroskopische Darstellung der S-Schicht (in blau) auf einer Zelle von Geobacillus stearothermophilus. Die schematische Abbildung stellt die gebundenen Zucker (rot) dar. Reprint aus BIOCHIMIE, (2001) 83: 591-599, Schaeffer and Messner, "Glycobiology of Surface Layer Proteins". Copyright (2004), mit Erlaubnis von Elsevier".
Abbildung: Der Wissenschaftsfonds



Noch vor kurzem herrschte die Annahme, dass ausschließlich mehrzellige Organismen in der Lage sind, Proteine durch Anhängen von Zuckern zu so genannten Glykoproteinen zu verändern. Seit wenigen Jahren ist aber bekannt, dass auch Bakterien dazu in der Lage sind. Diesen können die so gewonnenen Proteinfunktionen wichtige Vorteile für ihr Überleben bieten.

... mehr zu:
»Bakterium »Glykosilierung »Protein »Zucker


Der Zucker macht´s

Das Team um Prof. Paul Messner am Zentrum für NanoBiotechnologie der Universität für Bodenkultur Wien erforscht seit einigen Jahren bei Bakterien den Mechanismus der Glykosilierung - also die Vorgänge, wie Zuckerreste an Proteine angehängt werden. Spezialisiert haben sich die ForscherInnen auf so genannte S-Schicht-Proteine. Diese bilden einen Mantel um die Zellmembran des Bakteriums und schützen es vermutlich vor ungünstigen Umwelteinflüssen. "Ein Teil dieser Funktionen könnten jene Zucker vermitteln, die an die Proteine gebunden werden. Durch diese Glykosilierung kann die biologische Funktion der Proteine für den Organismus verändert werden", führt Prof. Messner aus.

Die für die Glykosilierung notwendige Maschinerie haben die WissenschafterInnen bei drei unter erhöhten Temperaturen lebenden bakteriellen Organismen auf der Ebene der Gene identifiziert. Diese drei Bakterienstämme gehören zur Gruppe der Gram-positiven Bakterien, die sich von den Gram-negativen im Aufbau der Zellwand unterscheiden. Je nach untersuchtem Bakterienstamm wurden 15 bis 30 Gene gefunden, die in einem Cluster angeordnet sind. Das bedeutet, sie liegen auf dem Genom direkt hintereinander.

Erstaunlicherweise sind die Gene im Cluster jedoch nicht streng nach ihrer Funktion geordnet, wie es von anderen Clustern bekannt ist. Diese "natürliche Unordnung" bei den untersuchten Arten ist möglicherweise auf eine in der Evolution nacheinander erfolgte Übertragung der Gene im Cluster von Gram-negativen auf Gram-positive Bakterien zurückzuführen. Das legen Sequenzvergleiche verschiedener Bakterienarten nahe. "Die Gram-positiven Bakterien haben diese vermutlich nachträglich aufgenommenen Gene vorteilhaft in ihrem natürlichen Lebensraum nützen können. Dafür spricht auch die Beobachtung, dass die Bakterien die Glykosilierungsfunktion in erster Linie unter ungünstigen Umweltbedingungen einsetzen", erläutert Prof. Messner.

Der nächste Schritt des Projekts ist, die Funktion der für das Anknüpfen der Zuckerreste zuständigen Gene näher zu charakterisieren. "Dazu schreiben wir die einzelnen Gene in ihre Proteine - Enzyme und Transporter - um und analysieren deren Funktion im Detail. Das so gewonnene Verständnis erlaubt uns, ihr komplexes Zusammenspiel während der Glykosilierung besser zu verstehen", beschreibt Prof. Messner.

Glykoproteine nach Maß

Die Kenntnis dieses Zusammenspiels ist auch Basis für die intelligente Nutzung der Glykosilierung - und damit für ihre Anwendungsmöglichkeiten in Biotechnologie und Medizin. Denn bei den bisher verwendeten Methoden, glykosilierte Proteine herzustellen, werden diese oft unzureichend beziehungsweise falsch glykosiliert, wodurch ihre biologische Aktivität sinken kann. Durch gezielte Modifikation der Gensequenzen ("Carbohydrate Engineering") könnten in Zukunft aber Bakterien Proteine mit maßgeschneiderter Zuckerstruktur erzeugen.

Mit diesem Potenzial für die biotechnologische und medizinische Anwendung bieten die FWF-Projekte zur Glykosilierung von Proteinen ein überzeugendes Beispiel dafür, dass erst ein grundlegendes Verständnis natürlicher Prozesse die Voraussetzung für die Anwendung innovativer Technologien schafft.

Kontakt:
Prof. Paul Messner
Zentrum für NanoBiotechnologie
Universität für Bodenkultur Wien
Gregor-Mendel-Straße 33
A-1180 Wien
T +43/1/47654-2202
E paul.messner@boku.ac.at

Aussender:
PR&D - Public Relations for Research & Development
Campus Vienna Biocenter 2
A-1030 Wien
T +43/1/5057044
E contact@prd.at

Till C. Jelitto | FWF
Weitere Informationen:
http://www.fwf.ac.at/en/press/bacteria.html

Weitere Berichte zu: Bakterium Glykosilierung Protein Zucker

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der Suche nach Universal-Grippeimpfstoffen – Neuraminidase unterschätzt?
21.06.2018 | Paul-Ehrlich-Institut - Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel

nachricht Organische Kristalle mit Twist und Selbstreparatur
21.06.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der “Stein von Rosetta” für aktive Galaxienkerne entschlüsselt

21.06.2018 | Physik Astronomie

Schneller und sicherer Fliegen

21.06.2018 | Informationstechnologie

Innovative Handprothesensteuerung besteht Alltagstest

21.06.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics