Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Protein & Zucker - ein bewährtes Überlebensrezept bei Bakterien

22.03.2004


Widrige Lebensbedingungen können Auswirkungen auf die Anordnung wichtiger Bakteriengene haben. ForscherInnen der Universität für Bodenkultur Wien haben bei drei an erhöhte Temperaturen angepassten Bakterienstämmen festgestellt, dass Gene für eine optimale Umweltanpassung direkt hintereinander auf dem Genom liegen. Die Gene bewirken durch das Anhängen von Zuckern die gezielte Veränderung von Proteinen, die einen Schutzmantel aufbauen. In zwei vom Wissenschaftsfonds FWF geförderten Projekten werden derzeit Einzelheiten dieses Prozesses untersucht. Ergebnisse der Studien könnten auch die Herstellung optimierter Proteine für den biotechnologischen und medizinischen Einsatz ermöglichen.


Elektronenmikroskopische Darstellung der S-Schicht (in blau) auf einer Zelle von Geobacillus stearothermophilus. Die schematische Abbildung stellt die gebundenen Zucker (rot) dar. Reprint aus BIOCHIMIE, (2001) 83: 591-599, Schaeffer and Messner, "Glycobiology of Surface Layer Proteins". Copyright (2004), mit Erlaubnis von Elsevier".
Abbildung: Der Wissenschaftsfonds



Noch vor kurzem herrschte die Annahme, dass ausschließlich mehrzellige Organismen in der Lage sind, Proteine durch Anhängen von Zuckern zu so genannten Glykoproteinen zu verändern. Seit wenigen Jahren ist aber bekannt, dass auch Bakterien dazu in der Lage sind. Diesen können die so gewonnenen Proteinfunktionen wichtige Vorteile für ihr Überleben bieten.

... mehr zu:
»Bakterium »Glykosilierung »Protein »Zucker


Der Zucker macht´s

Das Team um Prof. Paul Messner am Zentrum für NanoBiotechnologie der Universität für Bodenkultur Wien erforscht seit einigen Jahren bei Bakterien den Mechanismus der Glykosilierung - also die Vorgänge, wie Zuckerreste an Proteine angehängt werden. Spezialisiert haben sich die ForscherInnen auf so genannte S-Schicht-Proteine. Diese bilden einen Mantel um die Zellmembran des Bakteriums und schützen es vermutlich vor ungünstigen Umwelteinflüssen. "Ein Teil dieser Funktionen könnten jene Zucker vermitteln, die an die Proteine gebunden werden. Durch diese Glykosilierung kann die biologische Funktion der Proteine für den Organismus verändert werden", führt Prof. Messner aus.

Die für die Glykosilierung notwendige Maschinerie haben die WissenschafterInnen bei drei unter erhöhten Temperaturen lebenden bakteriellen Organismen auf der Ebene der Gene identifiziert. Diese drei Bakterienstämme gehören zur Gruppe der Gram-positiven Bakterien, die sich von den Gram-negativen im Aufbau der Zellwand unterscheiden. Je nach untersuchtem Bakterienstamm wurden 15 bis 30 Gene gefunden, die in einem Cluster angeordnet sind. Das bedeutet, sie liegen auf dem Genom direkt hintereinander.

Erstaunlicherweise sind die Gene im Cluster jedoch nicht streng nach ihrer Funktion geordnet, wie es von anderen Clustern bekannt ist. Diese "natürliche Unordnung" bei den untersuchten Arten ist möglicherweise auf eine in der Evolution nacheinander erfolgte Übertragung der Gene im Cluster von Gram-negativen auf Gram-positive Bakterien zurückzuführen. Das legen Sequenzvergleiche verschiedener Bakterienarten nahe. "Die Gram-positiven Bakterien haben diese vermutlich nachträglich aufgenommenen Gene vorteilhaft in ihrem natürlichen Lebensraum nützen können. Dafür spricht auch die Beobachtung, dass die Bakterien die Glykosilierungsfunktion in erster Linie unter ungünstigen Umweltbedingungen einsetzen", erläutert Prof. Messner.

Der nächste Schritt des Projekts ist, die Funktion der für das Anknüpfen der Zuckerreste zuständigen Gene näher zu charakterisieren. "Dazu schreiben wir die einzelnen Gene in ihre Proteine - Enzyme und Transporter - um und analysieren deren Funktion im Detail. Das so gewonnene Verständnis erlaubt uns, ihr komplexes Zusammenspiel während der Glykosilierung besser zu verstehen", beschreibt Prof. Messner.

Glykoproteine nach Maß

Die Kenntnis dieses Zusammenspiels ist auch Basis für die intelligente Nutzung der Glykosilierung - und damit für ihre Anwendungsmöglichkeiten in Biotechnologie und Medizin. Denn bei den bisher verwendeten Methoden, glykosilierte Proteine herzustellen, werden diese oft unzureichend beziehungsweise falsch glykosiliert, wodurch ihre biologische Aktivität sinken kann. Durch gezielte Modifikation der Gensequenzen ("Carbohydrate Engineering") könnten in Zukunft aber Bakterien Proteine mit maßgeschneiderter Zuckerstruktur erzeugen.

Mit diesem Potenzial für die biotechnologische und medizinische Anwendung bieten die FWF-Projekte zur Glykosilierung von Proteinen ein überzeugendes Beispiel dafür, dass erst ein grundlegendes Verständnis natürlicher Prozesse die Voraussetzung für die Anwendung innovativer Technologien schafft.

Kontakt:
Prof. Paul Messner
Zentrum für NanoBiotechnologie
Universität für Bodenkultur Wien
Gregor-Mendel-Straße 33
A-1180 Wien
T +43/1/47654-2202
E paul.messner@boku.ac.at

Aussender:
PR&D - Public Relations for Research & Development
Campus Vienna Biocenter 2
A-1030 Wien
T +43/1/5057044
E contact@prd.at

Till C. Jelitto | FWF
Weitere Informationen:
http://www.fwf.ac.at/en/press/bacteria.html

Weitere Berichte zu: Bakterium Glykosilierung Protein Zucker

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften