Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Megamoleküle durch Sonnenlicht

17.03.2004


Ein Team des Paul Scherrer Instituts (PSI) und der ETH Zürich erforscht, wie sich Aerosolpartikel - also Feinstaub - aus gasförmigen Stoffen bilden. Dafür benutzen die Forschenden die kürzlich am PSI aufgebaute Smogkammer sowie eine Vielzahl analytischer Methoden, einschliesslich der Laser-Massenspektrometrie der ETH Zürich für die chemische Charakterisierung. Die Untersuchungen zeigten, dass Folgereaktionen im gebildeten Aerosol zu neuen Substanzen führen, die wesentlich weniger flüchtig sind als die Ausgangsstoffe und so den Anteil der Aerosolpartikel erheblich erhöhen. Das spektakuläre Resultat liegt quer zu bisherigen Modellen und ist in der aktuellen Ausgabe des Wissenschaftsmagazins "Science" veröffentlicht.


Chemiedoktorand Dwane Paulsen simuliert in der PSI-Smogkammer einen Sommertag: Die Aerosolmasse nimmt zu.


Die neue Smogkammer des PSI ermöglicht Klimaforschung unter kontrollierten Bedingungen



Wo der Mensch Öl, Gas, Kohle oder Holz verbrennt, gelangen täglich weltweit Millionen Tonnen kleinste, unsichtbare Teilchen in die Atmosphäre. Solche so genannten Aerosole sind kleiner als ein Tausendstel-Millimeter und schweben in fester oder flüssiger Form in der Luft. Epidemiologische Studien belegen, dass Aerosolpartikel gesundheitliche Auswirkungen haben. Sie dringen tief in die Lungen ein und sind teils Krebs erregend sowie mitverantwortlich für Herz-Kreislauf- und Atemwegserkrankungen. Auch beeinflussen sie den Strahlungshaushalt der Erde - unter anderem dadurch, dass sie Sonnenlicht zurück ins Weltall streuen. Die Aerosole haben damit eine abkühlende Wirkung und wirken dem Effekt der Treibhausgase entgegen. Um diese Folgen besser untersuchen und auch quantifizieren zu können, müssten aber die chemischen, physikalischen und optischen Eigenschaften der Aerosole und ihrer Bestandteile genauer bekannt sein.



Sommertag in Smogkammer simuliert

Bisher ging man davon aus, dass bei hohen Temperaturen die Aerosole am Nachmittag verdunsten und sich demzufolge die Masse der Partikel verringert. Ein Forschungsteam des PSI und der ETH Zürich hat Sommertage in der neuen Smogkammer am PSI simuliert und kommt zu einem völlig entgegengesetzten Befund. Je länger die Sonneneinstrahlung dauert, desto mehr nehmen diese an Masse und Volumen zu. Ein wesentlicher Anteil der Aerosolpartikel kommt nicht direkt aus Auspuff oder Kamin, sondern wird erst unter Sonneneinwirkung in der Atmosphäre gebildet.

In der Smogkammer stellte man in einem durchsichtigen 27-Kubikmeter-Teflonsack vorerst einen repräsentativen Mix von Abgasstoff (Trimethylbenzol), Stickoxid und Wasserdampf bereit. Anschliessend wurde mit vier starken Sonnensimulatoren (total 16 kW Lichtleistung) ein Sommertag simuliert. Innert einer Stunde bildeten sich aufgrund der ablaufenden Atmosphärenchemie aus den Gasen Aerosolpartikel.

Moleküle mit sehr hohem Gewicht entstehen

Chemische Untersuchungen an der ETH Zürich mittels Laser-Massenspektrometrie zeigten, dass im Lauf der bis zu 24-stündigen Experimente sich Moleküle mit sehr hohem Molekulargewicht bildeten (bis zu 1000 atomaren Masseneinheiten). Die Entstehung solcher Megamoleküle weist auf Polymerisationsreaktionen hin. Weiter untersuchte man die Flüchtigkeit der gebildeten Aerosolpartikel. Dabei war deutlich zu erkennen, wie diese bei längerer Einstrahlzeit abnimmt. Die Aerosolteilchen werden stabiler, indem sie bei Erwärmung weniger stark verdampfen. Die spektakulären Ergebnisse, die in der aktuellen Ausgabe von "Science" publiziert sind, ergeben eine einfache Erklärung von bisher rätselhaften Resultaten aus Felduntersuchungen. Zudem konnte nachgewiesen werden, dass die neu entdeckten Polymere bis über 50 Prozent der gesamten Aerosolmasse ausmachen, was ein wesentlicher Schritt hin zu einer vollständigen Charakterisierung der Aerosole darstellt. Die Tatsache, dass damit ein grosser Anteil der Aerosolmasse identifiziert werden konnte, stellt einen wichtigen Fortschritt dar im Hinblick auf die noch wenig erforschten gesundheitlichen und klimatologischen Auswirkungen der Aerosole.

Für weitere Auskünfte:

PD Dr. Urs Baltensperger, Leiter Labor für Atmosphärenchemie, PSI
Tel. +41 (0)56 310 24 08 oder +41 (0)79 679 65 34
Email: urs.baltensperger@psi.ch

Dr. Markus Kalberer, Laboratorium für Organische Chemie, ETH Zürich
Tel. +41 (0)1 632 29 29, Email: kalberer@org.chem.ethz.ch

Prof. Dr. Renato Zenobi, Laboratorium für Organische Chemie, ETH Zürich
Tel. +41 (0)1 632 43 76, Email: zenobi@org.chem.ethz.ch

Voranzeige für Medienreise aufs Jungfraujoch

Die Aerosolforschung gewinnt innerhalb der Klimaforschung immer mehr an Bedeutung. Um den Medienschaffenden einen realitätsnahen Einblick in diese Disziplin der Atmosphärenchemie zu verleihen, bietet das Paul Scherrer Institut am Dienstag, 30. März 2004, eine Medienreise aufs Jungfraujoch an. Dort oben in der Forschungsstation auf 3850 Metern über Meer untersucht zurzeit ein internationales Team von 14 Wissenschaftlern unter Leitung des PSI, wie die Aerosolteilchen auf die Wolkenbildung wirken - ein wichtiger Faktor für den Klimaantrieb. Dabei kommt ein weltweit einmaliges Instrument zu seinem Ersteinsatz. Es saugt Eiskristalle an, die dann verdunstet und analysiert werden. Medienschaffende erhalten so die Gelegenheit, live bei den Untersuchungen dabei zu sein und direkt neueste Ergebnisse vermittelt zu bekommen. Eine detaillierte Einladung folgt, Voranmeldungen können bereits erfolgen an Beat Gerber, den Kommunikationsverantwortlichen des PSI.

Beat Gerber | idw
Weitere Informationen:
http://www.psi.ch/news_events/news_events.shtml
http://www.sciencemag.org

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien aus dem Blut «ziehen»
07.12.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht HIV: Spur führt ins Recycling-System der Zelle
07.12.2016 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie