Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronische DNA Detektierung auf einem Transistornetzwerk

15.03.2004


Ein Team von Physikern des „Pierre Aigrain Labors“ (gemeinsames Labor von Ecole Normale Supérieure, CNRS, Universitäten Paris 6 und 7) hat gerade bewiesen, dass es möglich ist, rein elektronisch DNA zu detektieren. Das angewandte Mittel für diese Detektierung ist ein Netzwerk von Silizium Transistoren. Übrigens ist die Detektierung auf der Ladung des biologischen Moleküls basiert, und braucht deshalb keine Markierung mit radioaktiven Isotopen, Fluoreszierenden Trägern, oder anderen Markierungsmitteln. So haben die Forscher einen Detektierungstest von einer der häufigsten Pathogenmutationen des Humangenoms realisiert. Diese Arbeit wurde im renommierten Fachjournal „Applied Physic Letters“ veröffentlicht, und begründet auch einen 2003 PCT Patent.


Das Prinzip der Detektierung von geladenen Molekülen mit einem Feldeffekttransistor ist seit 3 Jahrzehnten bekannt. Bisher war die Detektierung von einem Biomolekül nur mit einem einzigen Feldeffekttransistor studiert. Den Forschern ist die Idee eingefallen, ein Transistornetzwerk (ungefähr 100 Transistore je mit einigen Quadratmikrometer Aktivoberfläche) zu benutzen, um eine Differentialmessung einzubringen, und die Detektierungsleistungen deutlich zu erhöhen.

Die Transistornetzwerke wurden in Zusammenarbeit mit dem Martinsried Max Planck Institut für Biochemie dank herkömmlichen Siliziumelektronikmethoden vorbereitet. Dann werden Biomolekülproben auf die Netzwerke gestellt, und die elektronische Charakteristik von jedem Transistor wird gemessen: wenn ein Transistor in Kontakt mit einem Biomolekül ist, verschiebt sich die Charakteristik abhängig von der Ladung des Biomoleküls (positive Verschiebung im Falle eines positiv geladenen Moleküls, negative Verschiebung im Falle eines negativ geladenen Moleküls). In bestimmten Verhältnissen induziert das in einer Wasserumgebung negativ geladene DNA eine negative Verschiebung, die gemessen werden kann.


Diese neue elektronische Messungstechnik wurde für die Detektierung einer Mutation des 13. Chromosoms angewandt: diese Mutation ist mit der erblichen Taubheit von Kindern verbunden, und ist eine der häufigsten pathologieinduzierten Mutationen des Humangenoms. Eine Enzymverstärkungsreaktion findet nur in Anwesenheit dieser Mutation statt, und das Produkt dieser Reaktion konnte mit dem Transistornetzwerk detektiert werden. Diese elektronische Detektierungsmethode mit Feldeffekttransistornetzwerken hat viele Vorteile für potentielle Anwendungen: Markierung der Biomoleküle ist unnötig, hohe Miniaturisierung, Analyse von einer hohen Zahl von Proben in Parallel, und Herstellung von Geräte vom „Labor auf einem Chip“ Typ.

Kontakt:
Ulrich Bockelmann Laboratoire Pierre Aigrain,
Département de Physique, Ecole Normale
rue Lhomond, F-75231 Paris Cedex 05, Frankreich
Email: ulrich.bockelmann@lpa.ens.fr

Dies ist ein Artikel aus dem Bulletin Wissenschaft-Frankreich (Nummer 49 vom 15.03.2004) Französische Botschaften in Deutschland, Österreich und der Schweiz Kostenloses Abonnement durch E-Mail : sciencetech@botschaft-frankreich.de

Ulrich Bockelmann | Französ. Botschaft Deutschland
Weitere Informationen:
http://www.lpa.ens.fr

Weitere Berichte zu: Biomolekül DNA Detektierung Molekül Mutation Transistor Transistornetzwerk

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Boost für Lipidforschung: Grazer Forscher erleichtern Lipidanalyse
24.10.2017 | Technische Universität Graz

nachricht Salmonellen als Medikament gegen Tumore
23.10.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Boost für Lipidforschung: Grazer Forscher erleichtern Lipidanalyse

24.10.2017 | Biowissenschaften Chemie

Bildung von Magma-Ozeanen auf Exoplaneten erforscht

24.10.2017 | Physik Astronomie

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften