Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektronische DNA Detektierung auf einem Transistornetzwerk

15.03.2004


Ein Team von Physikern des „Pierre Aigrain Labors“ (gemeinsames Labor von Ecole Normale Supérieure, CNRS, Universitäten Paris 6 und 7) hat gerade bewiesen, dass es möglich ist, rein elektronisch DNA zu detektieren. Das angewandte Mittel für diese Detektierung ist ein Netzwerk von Silizium Transistoren. Übrigens ist die Detektierung auf der Ladung des biologischen Moleküls basiert, und braucht deshalb keine Markierung mit radioaktiven Isotopen, Fluoreszierenden Trägern, oder anderen Markierungsmitteln. So haben die Forscher einen Detektierungstest von einer der häufigsten Pathogenmutationen des Humangenoms realisiert. Diese Arbeit wurde im renommierten Fachjournal „Applied Physic Letters“ veröffentlicht, und begründet auch einen 2003 PCT Patent.


Das Prinzip der Detektierung von geladenen Molekülen mit einem Feldeffekttransistor ist seit 3 Jahrzehnten bekannt. Bisher war die Detektierung von einem Biomolekül nur mit einem einzigen Feldeffekttransistor studiert. Den Forschern ist die Idee eingefallen, ein Transistornetzwerk (ungefähr 100 Transistore je mit einigen Quadratmikrometer Aktivoberfläche) zu benutzen, um eine Differentialmessung einzubringen, und die Detektierungsleistungen deutlich zu erhöhen.

Die Transistornetzwerke wurden in Zusammenarbeit mit dem Martinsried Max Planck Institut für Biochemie dank herkömmlichen Siliziumelektronikmethoden vorbereitet. Dann werden Biomolekülproben auf die Netzwerke gestellt, und die elektronische Charakteristik von jedem Transistor wird gemessen: wenn ein Transistor in Kontakt mit einem Biomolekül ist, verschiebt sich die Charakteristik abhängig von der Ladung des Biomoleküls (positive Verschiebung im Falle eines positiv geladenen Moleküls, negative Verschiebung im Falle eines negativ geladenen Moleküls). In bestimmten Verhältnissen induziert das in einer Wasserumgebung negativ geladene DNA eine negative Verschiebung, die gemessen werden kann.


Diese neue elektronische Messungstechnik wurde für die Detektierung einer Mutation des 13. Chromosoms angewandt: diese Mutation ist mit der erblichen Taubheit von Kindern verbunden, und ist eine der häufigsten pathologieinduzierten Mutationen des Humangenoms. Eine Enzymverstärkungsreaktion findet nur in Anwesenheit dieser Mutation statt, und das Produkt dieser Reaktion konnte mit dem Transistornetzwerk detektiert werden. Diese elektronische Detektierungsmethode mit Feldeffekttransistornetzwerken hat viele Vorteile für potentielle Anwendungen: Markierung der Biomoleküle ist unnötig, hohe Miniaturisierung, Analyse von einer hohen Zahl von Proben in Parallel, und Herstellung von Geräte vom „Labor auf einem Chip“ Typ.

Kontakt:
Ulrich Bockelmann Laboratoire Pierre Aigrain,
Département de Physique, Ecole Normale
rue Lhomond, F-75231 Paris Cedex 05, Frankreich
Email: ulrich.bockelmann@lpa.ens.fr

Dies ist ein Artikel aus dem Bulletin Wissenschaft-Frankreich (Nummer 49 vom 15.03.2004) Französische Botschaften in Deutschland, Österreich und der Schweiz Kostenloses Abonnement durch E-Mail : sciencetech@botschaft-frankreich.de

Ulrich Bockelmann | Französ. Botschaft Deutschland
Weitere Informationen:
http://www.lpa.ens.fr

Weitere Berichte zu: Biomolekül DNA Detektierung Molekül Mutation Transistor Transistornetzwerk

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Von der Genexpression zur Mikrostruktur des Gehirns
24.04.2018 | Forschungszentrum Jülich

nachricht Nano-Ampel zeigt Risiko an
24.04.2018 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von der Genexpression zur Mikrostruktur des Gehirns

24.04.2018 | Biowissenschaften Chemie

Bestrahlungserfolg bei Hirntumoren lässt sich mit kombinierter PET/MRT vorhersagen

24.04.2018 | Medizintechnik

RWI/ISL-Containerumschlag-Index auf hohem Niveau deutlich rückläufig

24.04.2018 | Wirtschaft Finanzen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics