Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zuverlässiges Erkennungsmerkmal für regulatorische T-Zellen gefunden

03.03.2004



Lebenswichtige Bremse für das Immunsystem


Für eine kontrollierte Immunantwort gegen Krankheitserreger sind die so genannten regulatorischen T-Zellen - kurz: TR-Zellen - entscheidend. Hat ein Patient zu wenige von ihnen, kann sein Immunsystem leicht überreagieren und den eigenen Körper angreifen. In schweren Fällen führt eine solche Reaktion zu Autoimmunerkrankungen wie etwa Rheuma, multipler Sklerose oder Diabetes Typ 1. Bisher ließen sich TR-Zellen in einem erkrankten Organismus kaum von anderen Zellen des Immunsystems unterscheiden und daher auch schlecht studieren. Das dürfte sich bald ändern: Forscher der Gesellschaft für Biotechnologische Forschung in Braunschweig (GBF) und der Medizinischen Hochschule Hannover (MHH) haben jetzt ein Merkmal gefunden, anhand dessen man TR-Zellen leicht identifizieren kann. Es handelt sich um ein spezifisches Oberflächenmolekül, das Neuropilin-1.

Die umfangreiche Klasse der T-Zellen löst bei der Immunreaktion des Körpers unterschiedlichste Prozesse aus, von der Abtötung infizierter Körperzellen bis zur Stimulation anderer Komponenten des Immunsystems. Der spezialiserte Untertyp der TR-Zellen hat die Aufgabe, die Aktivität anderer T-Zellen zu hemmen und so ein "Überschießen" der Immunreaktion zu verhindern. Forscher unterscheiden die vielen Typen von T-Zellen anhand so genannter Oberflächen-Marker: Molekülstrukturen, die im günstigsten Fall nur auf einem Zelltyp vorkommen und auf allen anderen fehlen.


Für TR-Zellen gab es bislang keinen zuverlässigen Marker: "Man hat sie bisher durch ein Oberflächenmolekül namens CD 25 identifiziert", erklärt GBF-Wissenschaftlerin Dr. Dunja Bruder. "Aber wenn das Immunsystem aktiv wird - also gerade in einem erkrankten Organismus - bilden auch andere T-Zellen das CD 25-Eiweiß an ihrer Oberfläche." Eine Unterscheidung ist dann nicht mehr möglich. Das Eiweiß Neuropilin-1 dagegen, so entdeckten die Forscher jetzt, kommt ausschließlich auf TR-Zellen vor, nicht aber auf aktivierten anderen Immunzellen. Eine überraschende Erkenntnis, wie Dr. Bruder sagt: "Bis vor kurzem hat man das Neuropilin-1 nur bei Nervenzellen gefunden. Welche Rolle es auf Immunzellen spielt, weiß man noch nicht."

Doch auch ohne Kenntnis seiner Funktion kann Neuropilin-1 als Unterscheidungsmerkmal von hohem Nutzen sein: "Mit seiner Hilfe können wir TR-Zellen von anderen Immunzellen abtrennen und besser studieren", erklärt GBF-Arbeitsgruppenleiter Professor Jan Buer. "Weil die TR-Zellen die Immunabwehr bremsen, hoffen wir, sie eines Tages gezielt steuern zu können. Mit ihrer Hilfe könnte man vielleicht das Immunsystem nach einer Transplantation ruhig stellen, um Abstoßungsreaktionen zu vermeiden - oder es andererseits bei Tumor-Erkrankungen und Infektionen gezielt stimulieren."

Thomas Gazlig | GBF
Weitere Informationen:
http://www.gbf.de

Weitere Berichte zu: Immunsystem Immunzelle Neuropilin-1 T-Zelle TR-Zellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungsnachrichten

Veränderungen in der Geschäftsführung von Phoenix Contact

22.09.2017 | Unternehmensmeldung

Tanzende Elektronen verlieren das Rennen

22.09.2017 | Physik Astronomie