Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bioinformatik im Kampf gegen AIDS

02.03.2004


Der Saarbrücker Bioinformatiker Professor Dr. Thomas Lengauer, Ph.D., Direktor am Saarbrücker Max-Planck-Institut für Informatik, ist ein hochkarätiger Wissenschaftler: Erst vor wenigen Wochen erhielt er den Karl-Heinz-Beckurts-Preis für herausragende wissenschaftlich-technische Leistungen, die in besonderem Maße industrielle Innovation gestärkt und gefördert haben. Davor wurde er im Oktober 2003 mit der bedeutendsten deutschen Informatikauszeichnung, der Konrad-Zuse-Medaille ausgezeichnet.



Lengauer (51) ist seit zwei Jahren Direktor am Saarbrücker Max-Planck-Institut, außerdem Honorarprofessor der Universität des Saarlandes und Sprecher des Zentrums für Bioinformatik. Er wies als einer der Ersten auf die Bedeutung der Bioinformatik hin und machte sie in Deutschland populär. Prof. Dr. Lengauer konzentriert sich auf Bioinformatik-Methoden für die Diagnose und Therapie von Krankheiten. In einer Arbeitsgruppe von 16 Leuten reichen die Aufgaben von der Grundlagenforschung über die Realisierung und Umsetzung der Ideen bis hin zur Anwendung. Dazu werden Brücken zu anderen Fächern wie z. B. Chemie, Biologie und Medizin geschlagen. Es geht z. B. um die Struktur- und Funktionsvorhersage von Proteinen sowie um ein Verfahren, mit dem man Datenbanken nach potenziellen Wirkstoffmolekülen durchsuchen kann, und das in der pharmazeutischen Industrie Anwendung findet. Dieses Verfahren ist Grundlage für die Startup-Firma BioSolveIT in Sankt Augustin bei Bonn, die Prof. Lengauer mit seinen Mitarbeitern gegründet hat. „Wir haben das Programm Flex-X entwickelt, das Bindungen zwischen Proteinen und Wirkstoffen analysiert. Es benötigt pro Wirkstoff nur 20 Sekunden“, erläuterte Prof. Lengauer.



Die Funktionen des menschlichen Körpers basieren auf komplexen Netzwerken chemischer Reaktionen. Zum Beispiel werden beim Stoffwechsel Moleküle im Körper aufgebaut, verändert und wieder abgebaut. Jede dazu nötige chemische Reaktion besitzt eine Art Wächter-Molekül, das diese Reaktion steuern kann. Diese Molekühle sind Proteine. Auch zum Austausch von Informationen im Körper werden Proteine herangezogen. Die korrekte Funktion und Konzentration der Proteine sorgt für die gewünschte dynamische Balance der Reaktionsnetzwerke im gesunden Körper. Bei Krankheiten wird diese Balance zum Nachteil des Patienten verändert. Eine Therapie sorgt dafür, dass eine neue verträgliche Balance hergestellt wird. Dies geschieht durch Ausschalten spezifischer chemischer Reaktionen, und dies wiederum durch Blockieren ihrer Wächter-Moleküle, die in diesem Zusammenhang auch Zielproteine genannt werden.

„Unsere Aufgabe ist es also nun, ein für die Heilung einer Krankheit geeignetes Zielprotein zu bestimmen und herauszufinden, welcher Wirkstoff sich fest daran bindet“, so Prof. Dr. Lengauer. „Haben wir einen geeigneten Wirkstoff gefunden, der sich genau in das Protein hineinsetzen kann, dann ist es blockiert.“ Die Bioinformatik-Methoden, die in der Gruppe von Prof. Lengauer entwickelt werden, dienen der Suche nach Zielproteinen und nach Wirkstoffen, die sie blockieren.

Doch es treten auch Probleme auf, da dasselbe Protein vielfältige Funktionen haben kann. Das Blockieren eines Proteins führt deshalb zu Nebenwirkungen. Die geeignete Auswahl des Zielproteins muss auch die Minimierung solcher Nebenwirkungen berücksichtigen. Selbst, wenn Zielprotein und Wirkstoff gefunden sind, ist die Arbeit für Bioinformatiker nicht beendet, so Prof. Lengauer weiter. „Bei Infektionskrankheiten verändern sich die Zielproteine ständig. Am Beispiel AIDS kann man das verdeutlichen. AIDS wird durch das HI-Virus übertragen, das für seine pathogenen Aktivitäten spezielle Proteine enthält. Medikamente gegen AIDS sind Wirkstoffe, die ein geeignetes Protein des Virus, nicht aber menschliche Proteine, blockieren. Das Virus antwortet auf die Therapie mit der Veränderung seiner Zielproteine, die durch die Wirkstoffe nun nicht mehr blockiert werden können: Das Virus wird resistent, so dass eine neue Therapie angewendet werden muss. Für AIDS stehen derzeit knapp 20 Wirkstoffe zur Verfügung, und pro Patient werden drei oder mehr Wirkstoffe gleichzeitig verabreicht. Wir haben eine Bioinformatik-Methode entwickelt, die Vorschläge macht, welche Wirkstoffkombination bei welcher Virus-Veränderung Erfolg verspricht.“

Seit zwei Jahren forscht Prof. Dr. Lengauer im Saarland. „Das ist ein kleines Land und ist deshalb gezwungen, Schwerpunkte zu setzen. Doch die Landesregierung betreibt eine effektive Schwerpunktpolitik. Ich bin mit der Unterstützung sehr zufrieden.“

Kontakt:

Max-Planck-Institut für Informatik
Prof. Dr. Thomas Lengauer
Stuhlsatzenhausweg 85, 66123 Saarbrücken
Tel.: (0681) 9325-900
Fax: (0681) 9352-999
E-Mail: mpi@mpi-sb.mpg.de

Prof. Dr. Thomas Lengauer | Staatskanzlei des Saarlandes
Weitere Informationen:
http://www.mpi-sb.mpg.de/~mpi

Weitere Berichte zu: Aids Bioinformatik Protein Wirkstoff Zielprotein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nesseltiere steuern Bakterien fern
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Die Immunabwehr gegen Pilzinfektionen ausrichten
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften