Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nano- und pikofluidische Systeme für die Biomedizintechnik

20.02.2004


Der Startschuss für das EU-Projekt GaNano ist gefallen. Ein internationaler Forschungsverbund arbeitet an der Entwicklung eines Systems , mit dem organische Substanzen wie z.B. Proteine und Bakterien in kleinsten Flüssigkeitsmengen wässriger Lösungen identifiziert und analysiert werden können.



Die Neuartigkeit des Systems besteht in der Verwendung des modernen Halbleitermaterials Galliumnitrid (GaN) zur Herstellung von transparenten elektronischen Sensoren sowie von optischen Emittern und Detektoren zur Analyse von Nanotröpfchen.



Vom 22.- 24. Februar 2004 findet am Zentrum für Mikro- und Nanotechnologien (ZMN) der TU Ilmenau das Auftakttreffen der internationalen Projektpartner statt.
Das vom Direktor des ZMN Professor Oliver Ambacher initiierte und künftig als Koordinator geleitete Forschungsprojekt trägt den Titel "Neue Generation von Galliumnitrid basierenden Sensoranordnungen für nano- und pikofluidische Systeme mit Anwendungen in schnellen und zuverlässigen biomedizinischen Tests" (GaNano).


Der Vorteil des geplanten Analysesystems besteht gegenüber konkurrierenden Geräten in der Kombination der transparenten Sensoren zur Messung der physikalischen und chemischen Eigenschaften von Nano- und Pikolitertröpfchen mit den Vorzügen der optischen Spektroskopie zum Nachweis von organischen Substanzen innerhalb der Flüssigkeit. Auf diese Weise können kleinste Mengen wertvoller organischer Substanzen oder die Prototypen im Test befindlicher Medikamente schnell und kostengünstig nachgewiesen und/oder evaluiert werden.

Das Projekt ist auf drei Jahre angelegt und wird mit rd. 3,7 Millionen Euro finanziert. Die Europäische Union (EU) fördert dieses Grundlagenforschungsprojekt (Specific Targeted Research or Innovation Project (STREP) mit 2,4 Millionen Euro. Davon fließen allein 370.000 Euro der TU Ilmenau zu.

Neben der TU Ilmenau sind acht weitere Partner aus Forschung und Industrie aus vier europäischen Ländern beteiligt: die Polytechnische Universität Madrid (ES), die Universität Kreta (GR), die Technische Universität München (D), das Institut für Forschung und Technologie Hellas (FORTH, GR), das Warschauer Institut für Hochdruck-Forschung (Unipress, PL) sowie die Firmen General Electric Global Research Europe GmbH (D), TopGaN Ltd. (PL) und die European Aeronautic Defence and Space Company GmbH (D).

Unter der Leitung von Professor Oliver Ambacher werden an der TU Ilmenau transparente, elektronische Sensoren auf der Basis des Halbleitermaterials GaN zur Messung des Volumens, des Ionengehalts, der Zuckerkonzentration, der Polarität und der Temperatur von Nano-Tröpfchen entwickelt. Weiterhin wird am ZMN das Gesamtsystem durch die Integration aller entwickelten Bauteile zu einem kompakten System konstruiert und an organischen Modellsystemen die Leistungsfähigkeit der experimentellen Anordnung optimiert.

Das Prinzip

Für biomedizinische Tests, d.h. im vorliegenden Projekt für den Nachweis organischer Substanzen in Nanoliter-Tröpfchen wässriger Lösungen, ist es erforderlich, sowohl die physikalischen und chemischen Eigenschaften der Tröpfchen (Volumen, Temperatur, pH-Wert, Ionenkonzentrationen) über miniaturisierte elektronische Sensoren zu messen, als auch eine optische Spektroskopie durch diese transparenten Sensoren hindurch zum Nachweis der organischen Substanzen zu ermöglichen.

Die elektronischen Sensoren sowie die für die optische Spektroskopie benötigten Lichtemitter und Detektoren werden aus Galliumnitrid-Schicht- und Nanostrukturen hergestellt. Solche Nanostrukturen aus dem modernen Halbleitermaterial GaN eignen sich in idealer Weise zur Herstellung elektronischer Sensoren für polare Flüssigkeiten, für Leucht- und Laserdioden mit Emissionen im grünen bis ultravioletten Spektralbereich sowie zur Realisierung von Lichtdetektoren mit hoher Empfindlichkeit in kontrollierbaren Spektralbereichen. Diese Bauelemente ermöglichen sowohl eine Transmissions- als auch Fluoreszenzspektroskopie, mit deren Hilfe einfache organische Moleküle, aber auch komplexe Organismen (z.B. Bakteriophagen) identifiziert und in ihrer Konzentration nachgewiesen werden können.

Die Anwendungen

Neue Anwendungen sieht die Industrie vor allem im Bereich des schnellen "Screenings" einer hohen Anzahl (etwa 100 pro Sekunde) von sehr kleinen, aber präzise kontrollierbaren Flüssigkeitströpfchen, die als Träger von bekannten und unbekannten Proteinen, Viren oder Bakterien fungieren können. Mit Hilfe der optischen Spektroskopie kann eine hohe Anzahl von Proben vermessen und auch geringe Mengen an organischen Substanzen aufgrund einer guten Statistik präzise nachgewiesen werden. Die möglichen Anwendungen in der Analytik und Diagnostik von organischen Substanzen erstrecken sich sowohl in Forschung als auch Industrie über die schnell expandierenden Arbeitsfelder der Biomedizin, Pharmazie und Labortechnik.

Der Ablauf

Das Forschungsvorhaben ist im Jan. 2004 gestartet und wird voraussichtlich 2006 abgeschlossen werden. Es ist in fünf Arbeitspakete untergliedert, die sich den folgenden Fachschwerpunkten widmen:

-Optimierung eines Dosiersystems zur Erzeugung von Nano- und Pikoliter-Tröpfchen,
-Entwicklung eines Arrays von optischen Sensoren für die optische Spektroskopie organischer Substanzen,
-Herstellung von positionierbaren, transparenten, elektronischen Sensoren zur Ermittlung physikalischer und chemischer Eigenschaften von Nano-Tröpfchen,
-Identifizierung von organischen Modellsystemen zum Test des Analysesystems
-Realisierung und Test eines Analysesystems durch Integration der entwickelten Subsysteme.

In der Endphase werden im Fluidiklabor des Zentrums für Mikro- und Nanotechnologien die entwickelten elektronischen und optischen Sensoren sowie die Dosier- und Positioniereinheit zu einem kompakten System kombiniert. An organischen Modellsystemen (z.B. Hefezellen oder ungefährlichen Bakterien) wird die Leistungsfähigkeit der experimentellen Anordnung getestet und zu einem Demonstrator zur schnellen und empfindlichen Analyse von biologischen Substanzen in kleinsten Flüssigkeitsmengen optimiert.

Kontakt/Information an der TU Ilmenau:

Projekt-Koordinator: Prof. Dr. rer. nat. Oliver Ambacher, Tel. 03677 69-3402,Oliver.Ambacher@tu-ilmenau.de
EU-Forschungsreferent der TU Ilmenau: Dr. Dirk Schlegel, Tel. 03677-69-2550, Dirk.Schlegel@tu-ilmenau.de
Zentrum für Mikro- und Nanotechnologien der TU Ilmenau, Referent des ZMN: Dr. Herwig Döllefeld, Tel. 03677 69-3400, herwig.doellefeld@tu-ilmenau.de

Wilfried Nax M.A. | idw
Weitere Informationen:
http://www.zmn.tu-ilmenau.de
http://www.topgan.fr.pl/ganano
http://www.tu-ilmenau.de/EI/FKE/NT

Weitere Berichte zu: Bakterium GaN Halbleitermaterial Mikro Modellsystemen Nanotechnologie Sensor Spektroskopie ZMN

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der erste Blick auf ein einzelnes Protein
18.01.2017 | Max-Planck-Institut für Festkörperforschung, Stuttgart

nachricht Unterschiedliche Rekombinationsraten halten besonders egoistische Gene im Zaum
18.01.2017 | Max-Planck-Institut für Evolutionsbiologie, Plön

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie

Das menschliche Hirn wächst länger und funktionsspezifischer als gedacht

18.01.2017 | Biowissenschaften Chemie

Zur Sicherheit: Rettungsautos unterbrechen Radio

18.01.2017 | Verkehr Logistik