Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wir sehen, was wir gelernt haben

17.02.2004


Noch im erwachsenen Alter wird unsere optische Wahrnehmung durch Lernprozesse im Gehirn optimiert, haben Tübinger Max-Planck-Wissenschaftler aufgedeckt


Das natürliche Bild eines Löwen (rechts) wurde mit visuellem Rauschen (links) vermischt, um eine verrauschte, schwer erkennbare Version des natürlichen Bilds (siehe Mitte bzw. Titelbild der Zeitschrift) herzustellen.
Bild: Robert Shallenberger/US Fish and Wildlife Service


Das Gehirn eine Makaken (macaca mulatta) (links) und eines Menschen (rechts) im Vergleich. Die Sehareale sind in beiden Gehirnen rot schattiert.
Bild: Klaus Lamberty/MPI für biologische Kybernetik



Durch die Vernetzung der Neuronen in den höheren kognitiven Regionen unseres Gehirns sind wir in der Lage, uns an Personen, Objekte oder Ereignisse zu erinnern. Dank der neuronalen Plastizität dieser Vernetzungen können wir uns auch immer wieder neue Inhalte merken. Forscher vom Tübinger Max-Planck-Institut für biologische Kybernetik haben nun nachgewiesen, dass das Lernen auch starke Auswirkungen auf die Neuronen in den Seharealen selbst hat. Lernprozesse tragen also dazu bei, die Interaktion und Rückkopplung zwischen sensorischen und assoziativen Gehirnarealen zu optimieren und auf diese Weise den für unser Verhalten relevanten Informationsfluss von den Seharealen zu maximieren. Die neuen Ergebnisse werden am 15. Februar 2004 in der in der erst vor kurzem gegründeten Fachzeitschrift "Public Library of Science - Biology (PLoS Biology)" veröffentlicht.



Das Gehirn von Primaten ist in der Lage, bekannte Objekte und Personen mit hoher Genauigkeit zu erkennen, obwohl diese in der Regel in komplexe und dynamische Szenen eingebettet sind. Diese Fähigkeit beruht nicht zuletzt darauf, dass Lernen und neuronale Plastizität es unserem Gehirn auch noch im Erwachsenenalter erlauben, sich ständig neu an eine sich verändernde Umwelt anzupassen und seine Wahrnehmungsprozesse kontinuierlich zu optimieren. So begünstigt wiederholtes Beobachten erfahrungsgemäß das Erkennen, doch wie das Gehirn diese Verbesserungen tatsächlich koordiniert, wusste man bisher nicht.

Visuelle Signale werden zunächst von den Augen zur primären Sehrinde (V1) geleitet und von dort dann an nahe gelegene, ‚niedere’ visuelle Verarbeitungsregionen (z.B. Areal V4) gesendet, die an der visuellen Merkmalsverarbeitung beteiligt sind. Gemeinsam bilden diese Gehirnregionen die so genannten "Sehareale" (vgl. Abb.2). Werden diese verletzt, führt das zu Blindheit. Von diesen Seharealen aus werden die visuellen Signale an ‚höhere’ kognitive Hirnareale im Temporal- und Frontallappen weitergeleitet, die an der Repräsentation von Dingen und Personen beteiligt sind und deren Verletzung dazu führt, dass wir Gegenstände oder Personen nicht mehr erkennen können.

Inzwischen weiß man, dass Lernen im erwachsenen Alter die Aktivität und die Vernetzung von Neuronen in den höheren Gehirnarealen verändert. Man nimmt an, dass diese neuronalen Veränderungen die interne Repräsentation gelernter Inhalte darstellen. Hingegen glaubte man lange Zeit, dass sich die Eigenschaften der Sehareale selbst im erwachsenen Alter nicht mehr verändern. Zwar gibt es seit einiger Zeit erste Hinweise, dass ich die Sehareale ebenfalls beim Lernen verändern, aber welches Ausmaß und welche Verhaltensrelevanz diese Lerneffekte haben, wird immer noch kontrovers diskutiert.

Gregor Rainer, Han Lee und Nikos Logothetis vom Max-Planck-Institut für biologische Kybernetik haben jetzt nachgewiesen, dass das Lernen tatsächlich auch die Aktivität der sensorischen Gehirnareale stark beeinflusst. Um diese Lerneffekte empirisch untersuchen zu können, hatten die Kognitionsforscher Affen trainiert, bestimmte Naturmotive auch noch in Computerbildern zu identifizieren, die mit Hilfe von Interpolationstechniken in unterschiedlichem Maße unkenntlich gemacht worden waren (vgl. Abb. 1).

Die Forscher zeigten den Affen am Monitor verschiedene Naturbilder, darunter auch von Vögeln und Menschen, in unterschiedlich stark verschwommenen Versionen. Die Affen sahen ein bestimmtes Bild und signalisierten dann, ob ein zweites Bild, dass ihnen kurze Zeit später gezeigt wurde, mit dem ersten übereinstimmte oder nicht. Parallel dazu wurde immer die Aktivität der V4-Neuronen gemessen. Hierbei stellte sich heraus, dass sich bei neuen bzw. unverrauschten Bilder die Aktivität der Neuronen kaum veränderte, während diese stark zunahm, wenn verrauschte Bilder gezeigt wurden. Die Wahrnehmung der teilweise unkenntlichen Bilder verbesserte sich, während zugleich die Aktivität und der Informationsgehalt von V4-Neuronen zunahm.

Doch wie können die einzelnen V4-Neuronen konkret die Fähigkeit verbessern, die verrauschten Bildmotive doch noch zu erkennen? Nachdem die Wissenschaftler eine Gruppe von Neuronen identifiziert hatten, die in Reaktion auf verrauschte Stimuli stärker feuerten, untersuchten die Forscher die Augenbewegungen der Affen, um herauszufinden, auf welche Weise die Affen ihnen bereits bekannte Motive in verrauschten Bildern wieder erkennen können. Hierbei zeigte sich, dass die Augenbewegungen nach dem Lernen wesentlich stärker bei den Original- und den dazu gehörigen verrauschten Bildern überlappten. Die Affen hatten also gelernt, ihre Aufmerksamkeit auf besonders herausragende Eigenschaften der Bilder zu konzentrieren und auf diese Weise auch die verschwommenen Versionen der Originalbilder zu erkennen.

Die Untersuchungen belegen, dass sich das Erkennen vage definierter Bilder durch das Lernen erheblich verbessert, und dass diese besseren Leistungen direkt mit Neuronen im Sehareal V4 in Verbindung stehen. Diese Neurone kompensieren undeutliche visuelle Inhalte, indem sie verschiedene Gehirnregionen miteinander koordinieren, was zu einer lernabhängigen Zunahme der Information über visuelle Inhalte im Sehareal V4 führte. Neurone im Sehareal V4 tragen also entscheidend dazu bei, die Unbestimmtheit von Wahrnehmungsinhalten aufzulösen. Sie interagieren dabei mit höheren Gehirnregionen, damit uneindeutige Bilder richtig interpretiert werden können.

Diese Befunde belegen, dass Lernen auch in den ‚niederen’ Seharealen zu Veränderungen des Informationsgehalts und der Aktivität von Neuronen führt. Sehen und Erkennen ist ein dynamischer Prozess, folgern Rainer und seine Kollegen, der durch die Interaktion zwischen ‚niederen’ sensorischen Regionen und dem Feedback aus‚höheren’ kognitiven Hirnarealen gekennzeichnet ist. Dazu werden die kontinuierlich auf der Netzhaut ankommenden Signale mit den Erwartungen und Erfahrungen des Gehirns verrechnet. Diese Integration zwischen Input und Erwartungen findet bereits in den ‚niederen’ Seharealen statt - wir sehen folglich das, was wir gelernt haben zu erkennen.

Das Projekt wurde unterstützt durch die Österreichische Akademie der Wissenschaften, die Max-Planck-Gesellschaft sowie die Deutsche Forschungsgemeinschaft (Heisenberg-Programm).

Weitere Informationen erhalten Sie von:

Priv.-Doz. Gregor Rainer, Ph.D.
Max-Planck-Institut für biologische Kybernetik, Tübingen
Tel.: 07071-601-658, Fax: -652
E-Mail: gregor.rainer@tuebingen.mpg.de

Gregor Rainer | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.tuebingen.mpg.de

Weitere Berichte zu: Affe Gehirnregion Neuron Sehareal V4-Neuronen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics