Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wir sehen, was wir gelernt haben

17.02.2004


Noch im erwachsenen Alter wird unsere optische Wahrnehmung durch Lernprozesse im Gehirn optimiert, haben Tübinger Max-Planck-Wissenschaftler aufgedeckt


Das natürliche Bild eines Löwen (rechts) wurde mit visuellem Rauschen (links) vermischt, um eine verrauschte, schwer erkennbare Version des natürlichen Bilds (siehe Mitte bzw. Titelbild der Zeitschrift) herzustellen.
Bild: Robert Shallenberger/US Fish and Wildlife Service


Das Gehirn eine Makaken (macaca mulatta) (links) und eines Menschen (rechts) im Vergleich. Die Sehareale sind in beiden Gehirnen rot schattiert.
Bild: Klaus Lamberty/MPI für biologische Kybernetik



Durch die Vernetzung der Neuronen in den höheren kognitiven Regionen unseres Gehirns sind wir in der Lage, uns an Personen, Objekte oder Ereignisse zu erinnern. Dank der neuronalen Plastizität dieser Vernetzungen können wir uns auch immer wieder neue Inhalte merken. Forscher vom Tübinger Max-Planck-Institut für biologische Kybernetik haben nun nachgewiesen, dass das Lernen auch starke Auswirkungen auf die Neuronen in den Seharealen selbst hat. Lernprozesse tragen also dazu bei, die Interaktion und Rückkopplung zwischen sensorischen und assoziativen Gehirnarealen zu optimieren und auf diese Weise den für unser Verhalten relevanten Informationsfluss von den Seharealen zu maximieren. Die neuen Ergebnisse werden am 15. Februar 2004 in der in der erst vor kurzem gegründeten Fachzeitschrift "Public Library of Science - Biology (PLoS Biology)" veröffentlicht.



Das Gehirn von Primaten ist in der Lage, bekannte Objekte und Personen mit hoher Genauigkeit zu erkennen, obwohl diese in der Regel in komplexe und dynamische Szenen eingebettet sind. Diese Fähigkeit beruht nicht zuletzt darauf, dass Lernen und neuronale Plastizität es unserem Gehirn auch noch im Erwachsenenalter erlauben, sich ständig neu an eine sich verändernde Umwelt anzupassen und seine Wahrnehmungsprozesse kontinuierlich zu optimieren. So begünstigt wiederholtes Beobachten erfahrungsgemäß das Erkennen, doch wie das Gehirn diese Verbesserungen tatsächlich koordiniert, wusste man bisher nicht.

Visuelle Signale werden zunächst von den Augen zur primären Sehrinde (V1) geleitet und von dort dann an nahe gelegene, ‚niedere’ visuelle Verarbeitungsregionen (z.B. Areal V4) gesendet, die an der visuellen Merkmalsverarbeitung beteiligt sind. Gemeinsam bilden diese Gehirnregionen die so genannten "Sehareale" (vgl. Abb.2). Werden diese verletzt, führt das zu Blindheit. Von diesen Seharealen aus werden die visuellen Signale an ‚höhere’ kognitive Hirnareale im Temporal- und Frontallappen weitergeleitet, die an der Repräsentation von Dingen und Personen beteiligt sind und deren Verletzung dazu führt, dass wir Gegenstände oder Personen nicht mehr erkennen können.

Inzwischen weiß man, dass Lernen im erwachsenen Alter die Aktivität und die Vernetzung von Neuronen in den höheren Gehirnarealen verändert. Man nimmt an, dass diese neuronalen Veränderungen die interne Repräsentation gelernter Inhalte darstellen. Hingegen glaubte man lange Zeit, dass sich die Eigenschaften der Sehareale selbst im erwachsenen Alter nicht mehr verändern. Zwar gibt es seit einiger Zeit erste Hinweise, dass ich die Sehareale ebenfalls beim Lernen verändern, aber welches Ausmaß und welche Verhaltensrelevanz diese Lerneffekte haben, wird immer noch kontrovers diskutiert.

Gregor Rainer, Han Lee und Nikos Logothetis vom Max-Planck-Institut für biologische Kybernetik haben jetzt nachgewiesen, dass das Lernen tatsächlich auch die Aktivität der sensorischen Gehirnareale stark beeinflusst. Um diese Lerneffekte empirisch untersuchen zu können, hatten die Kognitionsforscher Affen trainiert, bestimmte Naturmotive auch noch in Computerbildern zu identifizieren, die mit Hilfe von Interpolationstechniken in unterschiedlichem Maße unkenntlich gemacht worden waren (vgl. Abb. 1).

Die Forscher zeigten den Affen am Monitor verschiedene Naturbilder, darunter auch von Vögeln und Menschen, in unterschiedlich stark verschwommenen Versionen. Die Affen sahen ein bestimmtes Bild und signalisierten dann, ob ein zweites Bild, dass ihnen kurze Zeit später gezeigt wurde, mit dem ersten übereinstimmte oder nicht. Parallel dazu wurde immer die Aktivität der V4-Neuronen gemessen. Hierbei stellte sich heraus, dass sich bei neuen bzw. unverrauschten Bilder die Aktivität der Neuronen kaum veränderte, während diese stark zunahm, wenn verrauschte Bilder gezeigt wurden. Die Wahrnehmung der teilweise unkenntlichen Bilder verbesserte sich, während zugleich die Aktivität und der Informationsgehalt von V4-Neuronen zunahm.

Doch wie können die einzelnen V4-Neuronen konkret die Fähigkeit verbessern, die verrauschten Bildmotive doch noch zu erkennen? Nachdem die Wissenschaftler eine Gruppe von Neuronen identifiziert hatten, die in Reaktion auf verrauschte Stimuli stärker feuerten, untersuchten die Forscher die Augenbewegungen der Affen, um herauszufinden, auf welche Weise die Affen ihnen bereits bekannte Motive in verrauschten Bildern wieder erkennen können. Hierbei zeigte sich, dass die Augenbewegungen nach dem Lernen wesentlich stärker bei den Original- und den dazu gehörigen verrauschten Bildern überlappten. Die Affen hatten also gelernt, ihre Aufmerksamkeit auf besonders herausragende Eigenschaften der Bilder zu konzentrieren und auf diese Weise auch die verschwommenen Versionen der Originalbilder zu erkennen.

Die Untersuchungen belegen, dass sich das Erkennen vage definierter Bilder durch das Lernen erheblich verbessert, und dass diese besseren Leistungen direkt mit Neuronen im Sehareal V4 in Verbindung stehen. Diese Neurone kompensieren undeutliche visuelle Inhalte, indem sie verschiedene Gehirnregionen miteinander koordinieren, was zu einer lernabhängigen Zunahme der Information über visuelle Inhalte im Sehareal V4 führte. Neurone im Sehareal V4 tragen also entscheidend dazu bei, die Unbestimmtheit von Wahrnehmungsinhalten aufzulösen. Sie interagieren dabei mit höheren Gehirnregionen, damit uneindeutige Bilder richtig interpretiert werden können.

Diese Befunde belegen, dass Lernen auch in den ‚niederen’ Seharealen zu Veränderungen des Informationsgehalts und der Aktivität von Neuronen führt. Sehen und Erkennen ist ein dynamischer Prozess, folgern Rainer und seine Kollegen, der durch die Interaktion zwischen ‚niederen’ sensorischen Regionen und dem Feedback aus‚höheren’ kognitiven Hirnarealen gekennzeichnet ist. Dazu werden die kontinuierlich auf der Netzhaut ankommenden Signale mit den Erwartungen und Erfahrungen des Gehirns verrechnet. Diese Integration zwischen Input und Erwartungen findet bereits in den ‚niederen’ Seharealen statt - wir sehen folglich das, was wir gelernt haben zu erkennen.

Das Projekt wurde unterstützt durch die Österreichische Akademie der Wissenschaften, die Max-Planck-Gesellschaft sowie die Deutsche Forschungsgemeinschaft (Heisenberg-Programm).

Weitere Informationen erhalten Sie von:

Priv.-Doz. Gregor Rainer, Ph.D.
Max-Planck-Institut für biologische Kybernetik, Tübingen
Tel.: 07071-601-658, Fax: -652
E-Mail: gregor.rainer@tuebingen.mpg.de

Gregor Rainer | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.tuebingen.mpg.de

Weitere Berichte zu: Affe Gehirnregion Neuron Sehareal V4-Neuronen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie