Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wir sehen, was wir gelernt haben

17.02.2004


Noch im erwachsenen Alter wird unsere optische Wahrnehmung durch Lernprozesse im Gehirn optimiert, haben Tübinger Max-Planck-Wissenschaftler aufgedeckt


Das natürliche Bild eines Löwen (rechts) wurde mit visuellem Rauschen (links) vermischt, um eine verrauschte, schwer erkennbare Version des natürlichen Bilds (siehe Mitte bzw. Titelbild der Zeitschrift) herzustellen.
Bild: Robert Shallenberger/US Fish and Wildlife Service


Das Gehirn eine Makaken (macaca mulatta) (links) und eines Menschen (rechts) im Vergleich. Die Sehareale sind in beiden Gehirnen rot schattiert.
Bild: Klaus Lamberty/MPI für biologische Kybernetik



Durch die Vernetzung der Neuronen in den höheren kognitiven Regionen unseres Gehirns sind wir in der Lage, uns an Personen, Objekte oder Ereignisse zu erinnern. Dank der neuronalen Plastizität dieser Vernetzungen können wir uns auch immer wieder neue Inhalte merken. Forscher vom Tübinger Max-Planck-Institut für biologische Kybernetik haben nun nachgewiesen, dass das Lernen auch starke Auswirkungen auf die Neuronen in den Seharealen selbst hat. Lernprozesse tragen also dazu bei, die Interaktion und Rückkopplung zwischen sensorischen und assoziativen Gehirnarealen zu optimieren und auf diese Weise den für unser Verhalten relevanten Informationsfluss von den Seharealen zu maximieren. Die neuen Ergebnisse werden am 15. Februar 2004 in der in der erst vor kurzem gegründeten Fachzeitschrift "Public Library of Science - Biology (PLoS Biology)" veröffentlicht.



Das Gehirn von Primaten ist in der Lage, bekannte Objekte und Personen mit hoher Genauigkeit zu erkennen, obwohl diese in der Regel in komplexe und dynamische Szenen eingebettet sind. Diese Fähigkeit beruht nicht zuletzt darauf, dass Lernen und neuronale Plastizität es unserem Gehirn auch noch im Erwachsenenalter erlauben, sich ständig neu an eine sich verändernde Umwelt anzupassen und seine Wahrnehmungsprozesse kontinuierlich zu optimieren. So begünstigt wiederholtes Beobachten erfahrungsgemäß das Erkennen, doch wie das Gehirn diese Verbesserungen tatsächlich koordiniert, wusste man bisher nicht.

Visuelle Signale werden zunächst von den Augen zur primären Sehrinde (V1) geleitet und von dort dann an nahe gelegene, ‚niedere’ visuelle Verarbeitungsregionen (z.B. Areal V4) gesendet, die an der visuellen Merkmalsverarbeitung beteiligt sind. Gemeinsam bilden diese Gehirnregionen die so genannten "Sehareale" (vgl. Abb.2). Werden diese verletzt, führt das zu Blindheit. Von diesen Seharealen aus werden die visuellen Signale an ‚höhere’ kognitive Hirnareale im Temporal- und Frontallappen weitergeleitet, die an der Repräsentation von Dingen und Personen beteiligt sind und deren Verletzung dazu führt, dass wir Gegenstände oder Personen nicht mehr erkennen können.

Inzwischen weiß man, dass Lernen im erwachsenen Alter die Aktivität und die Vernetzung von Neuronen in den höheren Gehirnarealen verändert. Man nimmt an, dass diese neuronalen Veränderungen die interne Repräsentation gelernter Inhalte darstellen. Hingegen glaubte man lange Zeit, dass sich die Eigenschaften der Sehareale selbst im erwachsenen Alter nicht mehr verändern. Zwar gibt es seit einiger Zeit erste Hinweise, dass ich die Sehareale ebenfalls beim Lernen verändern, aber welches Ausmaß und welche Verhaltensrelevanz diese Lerneffekte haben, wird immer noch kontrovers diskutiert.

Gregor Rainer, Han Lee und Nikos Logothetis vom Max-Planck-Institut für biologische Kybernetik haben jetzt nachgewiesen, dass das Lernen tatsächlich auch die Aktivität der sensorischen Gehirnareale stark beeinflusst. Um diese Lerneffekte empirisch untersuchen zu können, hatten die Kognitionsforscher Affen trainiert, bestimmte Naturmotive auch noch in Computerbildern zu identifizieren, die mit Hilfe von Interpolationstechniken in unterschiedlichem Maße unkenntlich gemacht worden waren (vgl. Abb. 1).

Die Forscher zeigten den Affen am Monitor verschiedene Naturbilder, darunter auch von Vögeln und Menschen, in unterschiedlich stark verschwommenen Versionen. Die Affen sahen ein bestimmtes Bild und signalisierten dann, ob ein zweites Bild, dass ihnen kurze Zeit später gezeigt wurde, mit dem ersten übereinstimmte oder nicht. Parallel dazu wurde immer die Aktivität der V4-Neuronen gemessen. Hierbei stellte sich heraus, dass sich bei neuen bzw. unverrauschten Bilder die Aktivität der Neuronen kaum veränderte, während diese stark zunahm, wenn verrauschte Bilder gezeigt wurden. Die Wahrnehmung der teilweise unkenntlichen Bilder verbesserte sich, während zugleich die Aktivität und der Informationsgehalt von V4-Neuronen zunahm.

Doch wie können die einzelnen V4-Neuronen konkret die Fähigkeit verbessern, die verrauschten Bildmotive doch noch zu erkennen? Nachdem die Wissenschaftler eine Gruppe von Neuronen identifiziert hatten, die in Reaktion auf verrauschte Stimuli stärker feuerten, untersuchten die Forscher die Augenbewegungen der Affen, um herauszufinden, auf welche Weise die Affen ihnen bereits bekannte Motive in verrauschten Bildern wieder erkennen können. Hierbei zeigte sich, dass die Augenbewegungen nach dem Lernen wesentlich stärker bei den Original- und den dazu gehörigen verrauschten Bildern überlappten. Die Affen hatten also gelernt, ihre Aufmerksamkeit auf besonders herausragende Eigenschaften der Bilder zu konzentrieren und auf diese Weise auch die verschwommenen Versionen der Originalbilder zu erkennen.

Die Untersuchungen belegen, dass sich das Erkennen vage definierter Bilder durch das Lernen erheblich verbessert, und dass diese besseren Leistungen direkt mit Neuronen im Sehareal V4 in Verbindung stehen. Diese Neurone kompensieren undeutliche visuelle Inhalte, indem sie verschiedene Gehirnregionen miteinander koordinieren, was zu einer lernabhängigen Zunahme der Information über visuelle Inhalte im Sehareal V4 führte. Neurone im Sehareal V4 tragen also entscheidend dazu bei, die Unbestimmtheit von Wahrnehmungsinhalten aufzulösen. Sie interagieren dabei mit höheren Gehirnregionen, damit uneindeutige Bilder richtig interpretiert werden können.

Diese Befunde belegen, dass Lernen auch in den ‚niederen’ Seharealen zu Veränderungen des Informationsgehalts und der Aktivität von Neuronen führt. Sehen und Erkennen ist ein dynamischer Prozess, folgern Rainer und seine Kollegen, der durch die Interaktion zwischen ‚niederen’ sensorischen Regionen und dem Feedback aus‚höheren’ kognitiven Hirnarealen gekennzeichnet ist. Dazu werden die kontinuierlich auf der Netzhaut ankommenden Signale mit den Erwartungen und Erfahrungen des Gehirns verrechnet. Diese Integration zwischen Input und Erwartungen findet bereits in den ‚niederen’ Seharealen statt - wir sehen folglich das, was wir gelernt haben zu erkennen.

Das Projekt wurde unterstützt durch die Österreichische Akademie der Wissenschaften, die Max-Planck-Gesellschaft sowie die Deutsche Forschungsgemeinschaft (Heisenberg-Programm).

Weitere Informationen erhalten Sie von:

Priv.-Doz. Gregor Rainer, Ph.D.
Max-Planck-Institut für biologische Kybernetik, Tübingen
Tel.: 07071-601-658, Fax: -652
E-Mail: gregor.rainer@tuebingen.mpg.de

Gregor Rainer | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.tuebingen.mpg.de

Weitere Berichte zu: Affe Gehirnregion Neuron Sehareal V4-Neuronen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie