Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rote Fluoreszenz in zwei Schritten

13.09.2017

Wissenschaftler entschlüsselten den Mechanismus, wie man Proteine, die auf Licht reagieren, in zwei Stufen dazu bringen kann, rot zu leuchten. Die Forschenden schufen damit die Grundlage für neue Anwendungen in der Mikroskopie und für funktionelle Analysen in der biologischen Forschung.

Am Anfang stand eine Beobachtung, die ETH-Wissenschaftler vor zwei Jahren mit einem speziellen fluoreszierenden Protein machten, dem aus Korallen isolierten Dendra 2. Es fluoresziert grün. Mit Licht kann man die molekulare Struktur des Proteins so verändern, dass es seine Farbe zu Rot wechselt.


Bescheint man Dendra 2 (rechts dessen farbgebende chemische Verbindung) mit blauem Laserlicht, fluoresziert es grün. Bescheint man es violett, ändert es seine chemische Struktur, so dass es zu einem rot fluoreszierenden Protein wird. Zu dieser Strukturänderung kommt es auch, wenn man es kurz mit blauem und gleich anschliessend mit rotem Licht (oder mit blauem und rotem Laserlicht gleichzeitig) bescheint. (Grafik: ETH Zürich)

Die Forschenden fanden damals einen zweiten, neuen Weg für diesen Farbwechsel: Man regt es zuerst kurz mit einem blauen Laserpuls an und bescheint es sofort danach mit Nah-Infrarot-Licht. Dieses zweistufige Farbumschalten kann unter anderem in der Fluoreszenzmikroskopie angewandt werden, um in einem Gewebe einen dreidimensional präzise definierten Punkt, beispielsweise eine einzige Zelle, sichtbar zu machen (siehe https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2015/05/chamaeleon...).

Ein internationales Forscherteam unter der Leitung von Periklis Pantazis, Professor am Departement für Biosysteme der ETH Zürich in Basel, hat diesen zweistufigen Farbwechselmechanismus nun aufgeklärt. Die Wissenschaftler nennen ihn «primed conversion». Das neue Wissen ermöglicht den Forschenden, andere Proteine, die auf Licht reagieren, so zu verändern, dass auch sie in zwei Stufen angeregt werden können.

Innerhalb von Millisekunden

Die Forschenden der ETH Zürich, des Karlsruher Instituts für Technologie und des Janelia Research Campus in Ashburn, Virginia, untersuchten die mit blauem Licht aktivierten Proteine besonders genau. Sie konnten dabei zeigen, dass sich diese Proteine in einem angeregten Zustand befinden, der mehrere Millisekunden anhält. «Das ist verhältnismässig lang», erklärt Pantazis, «andere Fluoreszenzphänomene habe eine um ein Vielfaches kürzere Dauer.»

Ebenfalls konnten die Wissenschaftler zeigen, dass es sich bei diesem Zustand um ein in der Quantenchemie bekanntes Phänomen, einen sogenannten Triplett-Zustand handelt. Nach rund fünf Millisekunden fällt das Farbprotein Dendra 2 wieder in seinen Grundzustand zurück. Zur «primed conversion» kommt es nur, wenn die zweite Stufe, das Bescheinen mit Nah-Infrarot-Licht, innerhalb des Triplett-Zeitfensters erfolgt.

Aminosäure-Sequenzen verändert

Die Lebensdauer des Triplett-Zustands hängt stark von der Stabilität des Farbproteins ab, und diese wiederum ist von der genauen Abfolge der Protein-Bausteine (der Aminosäuren) abhängig. Die Wissenschaftler veränderten daher bei Dendra 2 die Aminosäure-Sequenz an mehreren Stellen. Dasselbe machten sie bei einem weiteren fluoreszierenden Protein, Eos, das bisher nicht zweistufig angeregt werden konnte. Aus der wissenschaftlichen Literatur war bekannt, dass diese Stellen für den Triplett-Zustand zentral sind.

Bei all den neuen Proteinen massen die Wissenschaftler die Dauer des Triplettzustands. Bei einigen der getesteten Proteinen verlängerte sich dieser Zustand markant. Auch konnten die Wissenschaftler das Eos-Protein so verändern, dass es ebenfalls zweistufig aktivierbar wurde. Dasselbe gelang ihnen bei weiteren sechs, bisher nicht zweistufig aktivierbaren Proteinen. «Die veränderten Proteine sind nicht nur erstmals zweistufig schaltbar, auch sind sie stabiler, und als Folge davon leuchten sie stärker», sagt Manuel Mohr, Doktorand in der Gruppe von Pantazis und Erstautor der Studie.

Mit jedem Mikroskop möglich

Die ursprüngliche Entdeckung machten die Wissenschaftler mit einem nicht-handelsüblichen Laser. Sie verwendeten dazu Licht im Nah-Infrarot-Bereich. Mittlerweile konnten die Wissenschaftler aber zeigen, dass der Effekt auch mit handelsüblichen Rot-Lasern, wie sie in jedem Fluoreszenzmikroskop verbaut sind, zustandekommt. Das heisst, «primed conversion» ist mit jedem Fluoreszenzmikroskop machbar.

«Primed conversion» kann in der Mikroskopie verwendet werden, um in einem Gewebe einen eng umrissenenen Punkt zu markieren. Dazu lenken die Wissenschaftler einen blauen und einen roten Laserstrahl so in das Gewebe, dass sich die Strahlen an einem Punkt kreuzen. Nur in diesem Kreuzungspunkt kommt es zur «primed conversion». «Weil weder blaues noch rotes Laserlicht toxisch wirken, eignet sich die Methode hervorragend für lebende Organismen», sagt Pantazis. Auch Anwendungen in weiteren Mikroskopietechniken seien denkbar, darunter in der extrem hochauflösenden Mikroskopie (super-resolution microscopy), die seit einigen Jahren existiert.

Hirnkartierung und Gensequenzierung

«Wir wissen jetzt, wie wir fotokonvertierbare Proteine so verändern, dass wir sie zweistufig schalten können», sagt Pantazis. Dieses Wissen haben die Forschenden patentieren lassen. Die ETH-Wissenschaftler arbeiten mit Proteinexperten zusammen, um weitere, in der Mikroskopie verwendete Farbproteine entsprechend zu verändern.

Kürzlich haben die Wissenschaftler Proteine so verändert, dass sie lichtgesteuert einen genaktivierenden Botenstoff abspalten lassen können, und zwar so, dass die Lichtaktivierung mit zwei Farben erfolgen kann. Forschende könnten ein Gewebe so mit Laser bestrahlen, dass sich ein blauer und ein roter Strahl an einem Punkt kreuzen. Damit liessen sich gezielt Gene in einer einzelnen Zelle des Gewebes aktivieren. Ausserdem lassen sich auch Proteine, die Kalzium detektieren, entsprechend verändern. Diese könnten in der 3D-Hirnkartierung eingesetzt werden.

Schliesslich können Biologen die neue Technik für weitere funktionelle Analysen in 3D anwenden: Die ETH Zürich hat für das Patent bereits mehrere Lizenzen vergeben, darunter eine an eine Start-up-Firma, welche die DNA-Sequenzierung in einem 3D-System entwickeln möchte.

Literaturhinweis

Mohr MA, Kobitski AY, Sabater LR, Nienhaus K, Obara CJ, Lippincott-Schwartz J, Nienhaus GU, Pantazis P: Rational Engineering of Photoconvertible Fluorescent Proteins for Dual-Color Fluorescence Nanoscopy Enabled by a Triplet-State Mechanism of Primed Conversion. Angewandte Chemie, 11. Juli 2017, doi: 10.1002/ange.201706121 [htttp://dx.doi.org/10.1002/ange.201706121]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2017/09/rote-fluor...

Hochschulkommunikation | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Biologischer Lichtsensor in Aktion gefilmt
15.06.2018 | Paul Scherrer Institut (PSI)

nachricht Belohnung fürs Gehirn
15.06.2018 | Max-Planck-Institut für Biologie des Alterns

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: ALMA entdeckt Trio von Baby-Planeten rund um neugeborenen Stern

Neuartige Technik, um die jüngsten Planeten in unserer Galaxis zu finden

Zwei unabhängige Astronomenteams haben mit ALMA überzeugende Belege dafür gefunden, dass sich drei junge Planeten im Orbit um den Säuglingsstern HD 163296...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Künstliche Intelligenz – Schafft der Mensch seine Arbeit ab?

15.06.2018 | Veranstaltungen

Internationale Konferenz zur Asteroidenforschung in Garching

13.06.2018 | Veranstaltungen

Meteoriteneinschläge und Spektralfarben: HITS bei Explore Science 2018

11.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

EMAG auf der AMB: Hochproduktive Lösungen für die vernetzte Automotive-Produktion

15.06.2018 | Messenachrichten

AchemAsia 2019 in Shanghai

15.06.2018 | Messenachrichten

Dem Fettfinger zu Leibe rücken: Neuer Nanolack soll Antifingerprint-Oberflächen schaffen

15.06.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics