Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Viele Proteine müssen laufen, um Fett zu aktivieren

14.08.2017

Wer macht was und wo, wenn die Fettspeicher im Körper aktiviert werden? Die Biochemikerin Ruth Birner-Grünberger untersucht mit Unterstützung des Wissenschaftsfonds FWF das komplexe Zusammenspiel der Aktivierung und Regulation der Lipolyse und liefert damit die Basis für neue Therapieansätze bei Krankheiten wie Diabetes oder Arteriosklerose.

Jeder Marathonläufer erreicht diesen Punkt: Nach dem schnellen Energielieferanten Glukose (aus Kohlenhydraten) fängt der Körper mit der Fettverbrennung an, um Energie zur Verfügung zu stellen. Wer sich ausdauernd und bei niedrigem Puls bewegt, setzt nach etwa 30 Minuten die Lipolyse in Gang. Das Gleiche passiert, wenn wir Hunger haben:


Im basalen Zustand (links vor dem hormonellen Signal zur Lipolyse) sind das Aktivatorprotein CGl58 und das Regulatorprotein Perilipin aneinander gebunden. Wird die Fettspaltung aktiviert (rechts) wird eines der beiden Proteine mit Phosphat markiert (Phosphorylierung) und CGI58 löst sich von Peripilin, um die erste von drei Lipasen (fettspaltende Enzyme) namens ATGL zu aktivieren. Quelle: Ruth Birner-Grünberger, Meduni Graz

Die Fettzellen bekommen ein hormonelles Signal, das Depot verfügbar zu machen und eingelagerte Fett-Tröpfchen in Fettsäuren aufzuspalten. Selbst wenn wir im moderaten Laufschritt unterwegs sind, laufen diese Prozesse im Körper blitzschnell ab. "Die Aktivierungs- und Steuerungsprozesse springen innerhalb von Sekunden an. Das geht nur, weil die Proteine für die Fettaufspaltung in der Zelle nicht erst gebaut, sondern nur entsperrt werden müssen."

In ihrem vom Wissenschaftsfonds FWF geförderten Projekt "Hormonale Regulation der Lipolyse" hat die Biochemikerin Ruth Birner-Grünberger drei Fragen analysiert: welche Proteine bei der Fettverbrennung beteiligt sind, wo sie räumlich an den Fett-Tröpfchen in den Fettzellen interagieren und wie sie zu- oder ausgeschaltet werden.

PHOSPHAT ALS SCHALTER

Birner-Grünberger beschäftigt sich seit ihrer Postdoc-Zeit 2002 mit der Lipolyse und entwickelt in ihrer Arbeitsgruppe am Institut für Pathologie der Medizinischen Universität Graz Technologien für Proteomik: "Dabei versuchen wir, für bestimmte Stoffwechselprozesse Proteine aufgrund ihrer Aktivität aufzuspüren", so die Projektleiterin.

Auf der Suche nach fettspaltenden Enzymen im Fettgewebe und in der Leber wurden in Vorstudien mehrere Beteiligte gefunden: "Es gibt mehrere Lipasen, also fettspaltende Proteine, zudem weitere Proteine, die den Prozess steuern." Besonders auffällig war die Fülle an Phosphorylierungen. Mit dieser chemischen Modifikation, bei der Phosphat an Proteine gebunden wird, können in den Zellen Proteine aktiviert oder ausgeschalten werden. Das ist zeit- und energiesparender, als jedes Mal die Proteinsynthese und den Proteinabbau anzuwerfen. Im Forschungsprojekt galt es zu beantworten, wann und wo chemische Modifikationen die Proteine im Fettstoffwechsel entriegeln oder lahmlegen.

Um dem Zusammenspiel der fettspaltenden Proteine auf die Schliche zu kommen, reichten in-vitro Studien allerdings nicht aus: "Das biologische System ist komplex, stark reguliert und ortsgebunden. Wir bekommen kein vollständiges Bild, wenn wir in einem Reagenzglas Fett-Tröpfchen, Lipase und Aktivator mischen", erklärt die Forscherin. Erst die Beobachtung tierischer Zellen mittels konfokalem Laserscan-Mikroskop führte zum gemeinsamen Erfolg, denn "Forschung bedeutet heute Kooperation", betont die Biochemikerin, die mit der Strukturbiologin Monika Oberer (Universität Graz) und mit der Zellbiologin Dawn Brasaemle (Rutgers University, New Jersey, USA) zusammenarbeitete, um die Proteine für die Versuchsreihen in entsprechender Menge und Qualität zu bekommen.

RÄUMLICH UND ZEITLICH GETAKTETE AKTIVIERUNG

So konnten die ersten Schritte der räumlichen und chemischen Interaktion an den Fett-Tröpfchen in Gewebszellen enthüllt werden: Um die erste (von drei) Lipasen zu aktivieren, braucht es in der Befehlskette den Aktivator CGl58 und den Regulator Perilipin. Die beiden Proteine sitzen im basalen Zustand der Fettzellen aneinander gebunden auf dem Lipid-Tropfen.

Durch die Markierung mit Phosphat trennen sie sich, CGl58 wandert an eine andere Stelle des Tropfens, um die erste Lipase (ATGL) zu aktivieren. Der Regulator Perilipin verhindert, dass die Lipasen aktiviert werden, wenn es nicht nötig ist. Das ist interessant, weil verbreitete Krankheiten wie Diabetes und Arteriosklerose durch die Überlastung des Fettstoffwechsels begünstigt werden. Wenn lange Zeit mehr Energie zugeführt wird, als der Körper verbrennen kann, wird ein sorgfältig getaktetes und räumlich austariertes System gestört.

In einem geplanten Folgeprojekt will die Leiterin der Forschungsgruppe "Functional Proteomics and Metabolic Pathways" sich mittels Phosphoproteomik (das ist die globale Analyse von Tausenden Proteinphosphorylierungen in Zellen) ansehen, welche energetischen Prozesse gleichzeitig mit der Lipolyse reguliert werden, wie zum Beispiel  Glykogenabbau, und deren zeitlichen Ablauf beobachten: "Es sieht so aus, als würden sich Fett-Zellen binnen Minuten optimal darauf einstellen, dass Fettsäuren benötigt werden und wie sie weiter verarbeitet werden. Wir brauchen sie ja nicht nur für die Bereitstellung von Energie, wie etwa bei Bewegung oder Hunger, sondern auch für den Aufbau von Zellmembranen und Signalmolekülen." Um diese Analysen durchführen zu können, wurde im Projekt auch eine Methode zur verbesserten Auswertung von Proteomik-Daten entwickelt.

Zur Person

Die Biochemikerin Ruth Birner-Grünberger (https://forschung.medunigraz.at/fodok/suchen.person_uebersicht?sprache_in=de&menue_id_in=101&id_in=80295) ist seit 2014 Leiterin der Forschungsgruppe "Functional Proteomics and Metabolic Pathways" an der Medizinischen Universität Graz und seit 2013 Koordinatorin des Omics Center Graz (http://omicscentergraz.at/). Sie promovierte in Technischer Chemie an der Technischen Universität Graz. Birner-Grünberger war Projektleiterin in den BMWF/GEN-AU Verbundprojekten GOLD II & III und leitet derzeit ein Projekt im FWF-Doktoratskolleg Metabolische und Kardiovaskulare Krankheiten (DK-MCD) zum Fettstoffwechsel. Sie war Gastprofessorin an der University of California in Berkeley (USA) sowie an der ETH Zürich.

Publikationen

Sahu-Osen A, Montero-Moran G (cofirst author), Schittmayer M, Fritz K, Dinh A, Chang YF, McMahon D, Boeszoermenyi A, Cornaciu I, Russell D, Oberer M, Carman GM, Birner-Gruenberger R (cocorresponding author), Brasaemle DL: CGI- 58/ABHD5 is phosphorylated on Ser239 by protein kinase A: control of subcellular localization (http://www.jlr.org/content/56/1/109.long). Journal of Lipid Research 2015, 56(1):109-21. DOI: 10.1194/jlr.M055004

Schittmayer M, Fritz K (cofirst author), Liesinger L, Griss J, Birner-Gruenberger R.: Cleaning out the Litterbox of Proteomic Scientists' Favorite Pet: Optimized Data Analysis Avoiding Trypsin Artifacts (http://pubs.acs.org/doi/abs/10.1021/acs.jproteome.5b01105). Journal of Proteome Research 2016, 15(4):1222-9. DOI:10.1021/acs.jproteome.5b01105

Bild und Text ab Montag, 14. August 2017 ab 9.00 Uhr MEZ verfügbar unter: http://scilog.fwf.ac.at

 
Wissenschaftlicher Kontakt
Assoz.-Prof. Ruth Birner-Grünberger
Institut für Pathologie
Medizinische Universität Graz
Stiftingtalstraße 24
8010 Graz
T +43 / 316 / 385-72962
E ruth.birner-gruenberger@medunigraz.at
W http://omicscentergraz.at
 
Der Wissenschaftsfonds FWF
Ingrid Ladner
Haus der Forschung
Sensengasse 1
1090 Wien
T +43 / 1 / 505 67 40 - 8117
E ingrid.ladner@fwf.ac.at
W http://scilog.fwf.ac.at
W http://www.fwf.ac.at
 
Versand
PR&D – Public Relations für Forschung & Bildung Mariannengasse 8
1090 Wien
T +43 / 1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Ingrid Ladner | PR&D - Public Relations für Forschung & Bildung GmbH

Weitere Berichte zu: Energie FWF Fett Fettverbrennung Fettzellen Lipase Lipasen Phosphat Proteine Proteomics Zellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie