Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Körperzellen - unverwüstlichkeit durch Improvisation

20.01.2004


Unsere Zellen sind erfinderisch wenn es darum geht, DNS zu duplizieren, selbst wenn sie beschädigt ist



Millionen Zellen teilen sich täglich in unserem Körper um abgenutzte Zellen zu ersetzen. Um dies zu erreichen, muss ihr DNS zunächst kopiert werden. Eine neue Studie des Weizmann Instituts zeigt, dass die Moleküle, die sich DNS-Polymerasen nennen und die Aufgabe haben DNS zu kopieren, improvisieren können, um dieses äußerst wichtige Ziel zu erreichen. Diese neue Einsicht in die Replikation und Reparatur von DNS könnte bei der Diagnose und Behandlung von Krankheiten behilflich sein, die mit beschädigter DNS zu tun haben (wie z.B. bei Krebs). Die überraschenden Forschungsergebnisse wurden in der Ausgabe vom 9. Dezember von Proceedings of the National Academy of Sciences (PNAS), USA, veröffentlicht.



DNS-Polymerasen bewegen sich entlang der DNS, produzieren jedes Mal dann neue "Duplikate" der DNS, wenn sich eine Zelle teilt. Auf diese Weise wird genetische Information durch unseren Körper und von einer Generation zur nächsten weitergegeben. Problematisch wird es, sobald die DNS beschädigt ist (wegen Zigarettenrauch, Röntgenstrahlung oder bestimmte körpereigene Reaktionen). Obwohl unser Körper spezielle Enzyme besitzt, die die DNS reparieren, bleiben einige Schäden unbemerkt - und die DNS-Polymerasen kommen zum Einsatz.

Prof. Zvi Livneh und Doktorandin Ayelet Maor-Shoshani von der Abteilung für Biochemie haben einen DNS-Strang (von E. Coli-Bakterien) aufgespalten und fremdes Material - das aus Rohölsubstanzen besteht -zwischen beiden Enden eingefügt. Wie erwartet, hörte die normale DNS-Polymerase auf zu arbeiten, als es auf das fremde Material stieß. Die Wissenschaftler stellten überrascht fest, dass eine spezialisierte DNS-Polymerase einsprang, um den feststeckenden Duplikationprozess zu retten und das Kopierverfahren fortzusetzen, wobei es nicht existierende, genetische Komponenten in das "Duplikat" eingab, sobald es auf das Fremdmaterial stieß. Dies ist vergleichbar mit einer Person, die ein paar Worte eines Liedes vergessen hat und schnell neue Worte erfindet und einfügt, um dann weiter singen zu können.

In einem anderen Fall übersprang eine spezialisierte DNS-Polymerase das Fremdmaterial oder entfernte es sogar, woraufhin sie dann dazu imstande war, ganz gewöhnlich weiterzuarbeiten. "Dies zeigt die außergewöhnliche Fähigkeit einer Zelle sich zu reproduzieren," sagt Livneh. "und es verleiht die Hoffnung, dass unser Körper sogar mit extremen Arten von Chemikalien, die versehentlich in unsere DNS eingeführt werden, fertig werden kann." Zwar stimmt es, dass DNS-Polymerasen durch Improvisieren einer Melodie Irrtümer in der DNS neuer Zellen (z.B. -Mutationen) hervorrufen können, aber Livneh erklärt, dass der Körper durchaus nicht alle Zellen mit beschädigter DNS sterben lassen kann, weil es davon zu viele gibt. "Nur wenn ein sehr großer Schaden in der DNS vorliegt, passiert es, dass die Zellen-Maschinerie `aufgibt´ und Zellen absterben lässt."

Prof. Zvi Livnehs Forschung wird finanziert vom M.D. Moross Institute for Krebsforschung, dem Levine Institute of Applied Science, dem Dr. Josef Cohn Minerva Center for Biomembrane Research, dem Dolfi and Lola Ebner Center for Biochemical Research und dem J & R Center for Scientific Research. Prof. Livneh hält den Maxwell-Ellis-Professoren-Lehrstuhl für Biochemie.

Ariela Rosen | idw
Weitere Informationen:
http://wis-wander.weizmann.ac.il

Weitere Berichte zu: DNS DNS-Polymerase DNS-Polymerasen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen