Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Knoblauch-Substanz zerstört Krebszellen selektiv

30.12.2003



Anhand einer neuen Methode werden Krebszellen selektiv zerstört während gesunde Zellen intakt bleiben.


Wissenschaftler des Weizmann Instituts haben Krebstumore in Mäusen zerstört, indem sie eine chemische Substanz benutzten, die auf natürliche Weise in Knoblauch vorkommt. Der Schlüssel zum Erfolg der Wissenschaftler liegt in der Entwicklung eines einzigartigen, zweistufigen Systems zum Einschleusen der krebszerstötenden Substanz in die Tumorzellen.

Allizin, so der Name dieser chemische Substanz, gibt dem Knoblauch sein augeprägtes Aroma und seinen Geschmack. Bereits seit vielen Jahren wissen Wissenschaftler, die Allizin untersuchen, dass es ebenso toxisch wie scharf ist. Es hat sich herausgestellt, dass es nicht nur Krebszellen, sondern auch Zellen von krankheitserregenden Mikroben und gesunde menschliche Körperzellen tötet. Glücklicherweise ist Allizin eine sehr instabile Substanz, die sich sehr schnell abbaut, sobald sie mit Nahrung aufgenommen wird, und unsere gesunden Körperzellen dadurch verschont. Der rapide Abbau dieser Substanz und ihre unspezifische Toxizität stellten ein doppeltes Hindernis in der Entwicklung einer auf Allizin basierenden Therapie dar.


An der Fakultät für Biochemie des Weizmann Instituts haben Dr. Aharon Rabinkov, Dr. Talia Miron und Dr. Marina Mironchik, die mit den Professoren David Mirelman und Meir Wilchek zusammenarbeiten, diese beiden Probleme durch die Entwicklung einer raffinierten Methode lösen können, die mit der punktuellen Genauigkeit einer schlauen Bombe funktioniert. Über ihre Forschungsergebnisse wurde in der Dezember-Ausgabe von Molecular Cancer Therapeutics berichtet.

Die Methode basiert auf der natürlichen Synthese Allizins. Allizin ist in ganzen, unbeschädigten Knoblauchzehen nicht existent; es ist das Produkt einer biochemischen Reaktion zweier Substanzen, die in winzigen, aneinander liegenden "Fächern" in jeder Knoblauchzehe vorhanden sind.

Die beiden Substanzen sind ein Enzym, Alliinase, und eine normalerweise inaktive Substanz namens Alliin. Wird die Knoblauchzehe jedoch beschädigt - entweder durch Bodenparasiten, die das weiche Gewebe anknabbern, oder durch Köche, die eine Knoblauchsosse zubereiten möchten - werden die Häute zwischen den verschiedenen "Fächern" aufgerissen und eine schnelle Allizin-Produktion erfolgt.

Die Wissenschaftler erkannten, dass auf diese Weise direkt am Tumorgewebe wiederholt hergestelltes Allizin die höchstmögliche Konzentration der toxischen Moleküle für die Tötung von Krebszellen zur Verfügung stellen kann.

Um den angepeilten Tumor genau ins Visier zu nehmen, nutzten die Wissenschaftler die Tatsache, dass die meisten Arten von Krebszellen auffällige Rezeptoren an ihrer Oberfläche aufweisen. Ein Antikörper, der darauf "programmiert" wird, die charakteristischen Rezeptoren eines Tumors zu erkennen, bindet sich dann chemisch an das Enzym Alliinase. Sobald er in die Blutbahn eingespritzt wird, sucht der Antikörper nach diesen Tumorzellen und bindet sich und das mitgeführte Enzym an sie. Die Wissenschaftler verabreichen dann in Abständen die zweite Komponente, das Alliin. Sobald es auf die Alliinase stößt, verwandelt die ausgelöste chemische Reaktion die normalerweise inaktiven Alliin-Moleküle in tödliche Allizin-Moleküle, die in die Tumorzelle eindringen und sie abtöten. Aufgrund des präzisen Eingabesystems, bleiben die umliegenden, gesunden Zellen intakt.

Mit dem Einsatz dieser Methode hat das Team es geschafft, das Heranwachsen von gaströsen Tumoren in Mäusen zu blockieren. Die den Tumor stoppende Wirkung wurde bis zum Ende der Experimentphase beobachtet, noch lange nachdem das intern produzierte Allizin abgegeben wurde. Die Wissenschaftler betonen, dass die Methode bei fast allen Krebsarten wirken könnte, solange sich ein spezifischer Antikörper herstellen lässt, der die für die Krebszellen typischen Rezeptoren identifiziert. Das Verfahren könnte von unschätzbarem Wert sein, um Metastasenbildung nach chirurgischen Eingriffen zu verhindern. "Obwohl Ärzte nicht herausfinden können, wohin die metastatischen Zellen gewandert sind und wo sie sich eingenistet haben," sagt Mirelman, " sollte der Antikörper-Alliinase-Alliin-Komplex dazu imstande sein, sie überall im Körper aufzuspüren und zu zerstören."

Prof. David Mirelmans Forschungsarbeit wird finanziert von: Y. Leon Benoziyo Institute for Molecular Medicine Robert Drake, Niederlande; Mr. And Mrs. Henry Meyer, Wakefield, Rhode Island; M.D. Moross Institute for Cancer Research; und von The Late Claire Reich, Forest Hills, New York.

Prof. Mirelman hält den Ben-Brender Lehrstuhl für Mikrobiologie und Parasitologie.

Das Weizmann Institut in Rehovot, Israel, gehört weltweit zu den führenden multidisziplinären Forschungseinrichtungen. Seine 2500 Wissenschaftler, Studenten, Techniker und anderen Mitarbeiter sind in einem breiten Spektrum naturwissenschaftlicher Forschung tätig. Zu den Forschungszielen des Instituts gehören neue Möglichkeiten im Kampf gegen Krankheit und Hunger, die Untersuchung wichtiger Fragestellungen in Mathematik und Informatik, die Erforschung der Physik der Materie und des Universums und die Entwicklung neuer Werkstoffe und neuer Strategien für den Umweltschutz.

Ariela Rosen | idw
Weitere Informationen:
http://wis-wander.weizmann.ac.il

Weitere Berichte zu: Alliinase Allizin Antikörper Enzym Krebszelle Rezeptor Tumorzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Hemmung von microRNA-29 schützt vor Herzfibrosen
20.11.2017 | Technische Universität München

nachricht Satellitenbilder zur Erfassung von Biodiversität nur bedingt tauglich
20.11.2017 | Helmholtz-Zentrum für Umweltforschung - UFZ

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

500 Kommunikatoren zu Gast in Braunschweig

20.11.2017 | Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche neuronale Netze: 5-Achs-Fräsbearbeitung lernt, sich selbst zu optimieren

20.11.2017 | Informationstechnologie

Tonmineral bewässert Erdmantel von innen

20.11.2017 | Geowissenschaften

Hemmung von microRNA-29 schützt vor Herzfibrosen

20.11.2017 | Biowissenschaften Chemie