Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vorherrschaft bei der Steuerung von Verhalten

20.01.2016

Neu entdeckter Neuronentypus entscheidend an der Unterdrückung von Handlungsimpulsen beteiligt

Die so genannten arkypallidalen Neurone oder Arky-Neurone, ein neu entdeckter Typus von Nervenzellen, können einen Handlungsimpuls unterdrücken und somit über Veränderungen in Aufmerksamkeit und Motorik Aufschluss geben. Damit sind diese Neuronen an der Steuerung von Verhalten beteiligt.


Neurowissenschaftler haben in den Basalganglien (farbig hervorgehoben) einen neuen Typus von Nervenzellen identifiziert.

Quelle: Allen Brain Explorer 2

Zu diesem Ergebnis kommen Neurowissenschaftlerinnen und -wissenschaftler aus drei Ländern, darunter Dr. Robert Schmidt, ein Nachwuchsforscher aus dem Exzellenzcluster BrainLinks-BrainTools der Universität Freiburg, in einem Artikel in der Fachzeitschrift „Neuron“. Die Studie veranschaulicht erstmals die Einzelschritte, aus denen sich der Befehl für einen Handlungsabbruch im Gehirn zusammensetzt.

Arky-Neurone sind in einem Teil der Basalganglien unterhalb der Großhirnrinde zu finden. Diese Region spielt eine Rolle bei unterschiedlichen Aufgaben des Gehirns. So ist sie an der Planung, Initiierung und laufenden Anpassung vieler Bewegungen beteiligt.

Die neuronalen Schaltkreise, die ein bestimmtes Verhaltensmuster aktivieren und ihm gegenüber einem anderen Vorrang gewähren, gelten allerdings noch als wenig erschlossen. An welcher Stelle angebrachtes Verhalten unterstützt und unangebrachtes Verhalten gehemmt wird, gilt als wichtige Frage für das Verständnis der Steuerung von normalem wie pathologischem Verhalten. Insbesondere für die Aufmerksamkeitsdefizit-Hyperaktivitätsstörung (ADHS), Tic-Störungen und die Parkinson’sche Krankheit birgt die vorliegende Studie Therapierelevanz.

In früheren Untersuchungen hatte das Forschungsteam bereits demonstriert, dass in den Basalganglien sowohl „Stop“- als auch „Go“-Signale vorhanden sind und diese Signale sich ein Wettrennen darum liefern, welches Verhalten am Ende ausgeführt wird.

Eine Interaktion ist aber auch zwischen den Signalen möglich, sagen die Forscherinnen und Forscher der Université de Bordeaux/Frankreich, der University of Michigan in Ann Arbor/USA und der Universität Freiburg. Auf Basis eines Versuchs mit Ratten haben sie nun den Beweis erbracht, dass das Stop-Signal das Go-Signal nicht nur überholen kann, sondern auch einen direkten Einfluss auf es ausübt.

Anfangs konkurrieren bei einem Stop-/Go-Rennen Impulse aus dem Nucleus subthalamicus sowie dem Striatum, zwei Regionen innerhalb der Basalganglien. Während der Nucleus subthalamicus ein Stop-Signal sendet, geht vom Striatum ein Go-Signal aus. Eine neue Erkenntnis aus Schmidts Forschung ist, dass die Arky-Neurone an dem Prozess beteiligt sind.

Identifizieren konnten die Forscher diesen Zelltyp durch dessen geringe Aktivität im Schlaf. Schmidt hat mit seinen Kolleginnen und Kollegen herausgefunden, dass Arky-Neurone ein weiteres Stop-Signal an das Striatum aussenden und so das Go-Signal drosseln. Da das Stop-Signal so das Rennen leichter gewinnen kann, ist dieser Schritt entscheidend für den Handlungsabbruch. Wodurch die Arky-Neurone wiederum aktiviert werden, ist noch in weiteren Studien zu klären.

Für das Verständnis der Verhaltenssteuerung sind neben den Stop-Signalen auch Eigenschaften der Go-Signale wichtig. In den Basalganglien, insbesondere im Striatum, werden Go-Signale von verschiedenen Botenstoffen, so genannten Neurotransmittern, beeinflusst. In einem Artikel für das Fachjournal „Nature Neuroscience“ hat Schmidt kürzlich als Co-Autor die Rolle des Botenstoffs Dopamin bei Lernverhalten und Motivation illustriert. Er ist der Meinung, dass Dopamin auch Auswirkungen auf den Go-Prozess haben könne. Weitere Einsichten in die elektrochemischen Zusammenhänge in den Basalganglien würden es womöglich leichter machen, konkrete Behandlungswege für die Parkinson’sche Krankheit und andere Bewegungsstörungen aufzuzeigen.

Originalveröffentlichungen:

2016
N. Mallet, R. Schmidt, D. Leventhal, F. Chen, N. Amer, T. Boraud, J. D. Berke, Arkypallidal Cells Send a Stop Signal to Striatum, In: Neuron 89, Philadelphia: Elsevier, pp. 1-9.

2016
A. A. Hamid, J. R. Pettibone, O. S. Mabrouk, V. L. Hetrick, R. Schmidt, C. M. Van der Weele, R. T. Kennedy, B. J. Aragona & J. D. Berke, Mesolimbic dopamine signals the value of work, In: Nature Neuroscience 19 (1), London: Macmillan, pp. 117-126.

Kontakt:
Dr. Robert Schmidt
Exzellenzcluster BrainLinks-BrainTools
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-9546
E-Mail: robert.schmidt@brainlinks-braintools.uni-freiburg.de

Levin Sottru
Science Communicator
Exzellenzcluster BrainLinks-BrainTools
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-67721
E-Mail: sottru@blbt.uni-freiburg.de

Weitere Informationen:

http://www.pr.uni-freiburg.de/pm/2016/pm.2016-01-20.5

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-freiburg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher beschreiben neuartigen Antikörper als möglichen Wirkstoff gegen Alzheimer
22.08.2017 | Martin-Luther-Universität Halle-Wittenberg

nachricht Virus mit Eierschale
22.08.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen