Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

NO-Nachweis

26.06.2000


... mehr zu:
»Fluoreszenz »Komplex »NO-Nachweis
Sensor für Lust-Molekül in Sicht

Neue Methode weist NO selektiv und empfindlich nach

Die Entdeckung, dass Stickstoffmonoxid (NO) im menschlichen Stoffwechsel vorkommt, war 1987 eine große Überraschung. Inzwischen wurden viele biologische Prozesse entdeckt, an denen das Gas als Botenstoff beteiligt ist. So spielt NO eine wichtige Rolle bei der Muskelentspannung, bei Immunreaktionen und hilft unserem Gedächtnis auf die Sprünge. Zum Medienstar wurde das kleine Molekül mit
der großen Wirkung 1998, als Viagra auf den Markt kam: Die blaue Wunderpille setzt im Körper NO frei, das aufgrund seiner gefäßerweiternden Wirkung Erektionsstörungen entgegenwirkt.

Ausreichend empfindliche Nachweismethoden für NO sind heiß begehrt, aber noch Mangelware. Das könnte sich bald ändern, denn Stephen J. Lippard, Katherine J. Franz und Nisha Singh vom Massachusetts Institute of Technology haben eine vielversprechende neue Nachweisstrategie für NO entwickelt, wie in der jüngsten Ausgabe der von der GDCh herausgegebenen Zeitschrift Angewandte Chemie berichtet wird.

Ein spezieller Cobaltkomplex ist die Basis der neuen Nachweismethode. Der Komplex besteht aus einem zentralen Cobaltatom, das von den zwei "Armen" eines organischen Liganden wie von einer Klammer umspannt wird. Der Ligand heftet sich mit insgesamt vier Bindungsstellen an das Cobaltatom. Kommt der Komplex mit Stickstoffmonoxid in Berührung, so verdrängen jeweils zwei NO-Moleküle zwei der
"Haftpunkte" des Liganden vom Cobalt. Der Ligand ist dann nur noch mit einem seiner zwei "Arme" gebunden. Der Clou der Methode besteht in den Veränderungen der Fluoreszenzeigenschaften des Liganden: Solange er vierfach an das Cobaltatom gebunden ist, wird durch Wechselwirkungen mit dem Zentralatom die Fluoreszenz des Liganden unterdrückt. Ist das eine "Ärmchen" dagegen freigesetzt, kann der Ligand wieder fluoreszieren. Die Fluoreszenz signalisiert also die Anwesenheit von NO. Auf andere Moleküle, wie etwa Sauerstoff, reagiert dieser NO-Nachweis
nicht, er ist selektiv.

"Viele der heutigen NO-Nachweise basieren auf der Identifizierung der Abbauprodukte Nitrit und Nitrat. Unser Fluoreszenzindikator reagiert dagegen direkt auf NO. Er hat das Potenzial, die Bildung von NO sowohl räumlich als auch
zeitlich aufgelöst in Echtzeit sichtbar zu machen," hofft Lippard. Derzeit arbeiten die Forscher an der Entwicklung noch empfindlicherer, wasserlöslicher Sensoren mit einer stärkeren Fluoreszenz. "Mit dieser zukünftigen
Sensor-Generation sollten NO-Messungen in Zellkulturen möglich sein. Und in ferner Zukunft könnten auch direkte medizinische Anwendungen in Frage kommen," zeigt sich Lippard optimistisch.

Kontakt:

Prof. Stephen Lippard
Dept. of Chemistry
Massachusetts Institute
of Technology
77 Massachusetts Avenue
Cambridge, MA 02139
USA

Fax: (+1) 617-258-8150

E-mail: lippard@lippard.mit.edu

Quelle: Angewandte Chemie 2000, 112 (12), 2194 - 2197

Dr. Kurt Begitt |

Weitere Berichte zu: Fluoreszenz Komplex NO-Nachweis

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Demenz: Neue Substanz verbessert Gehirnfunktion
28.07.2017 | Technische Universität München

nachricht Mit einem Flow-Reaktor umweltschonend Wirkstoffe erzeugen
28.07.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ruckartige Bewegung schärft Röntgenpulse

Spektral breite Röntgenpulse lassen sich rein mechanisch „zuspitzen“. Das klingt überraschend, aber ein Team aus theoretischen und Experimentalphysikern hat dafür eine Methode entwickelt und realisiert. Sie verwendet präzise mit den Pulsen synchronisierte schnelle Bewegungen einer mit dem Röntgenlicht wechselwirkenden Probe. Dadurch gelingt es, Photonen innerhalb des Röntgenpulses so zu verschieben, dass sich diese im gewünschten Bereich konzentrieren.

Wie macht man aus einem flachen Hügel einen steilen und hohen Berg? Man gräbt an den Seiten Material ab und schüttet es oben auf. So etwa kann man sich die...

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Ferienkurs mit rund 600 Teilnehmern aus aller Welt

28.07.2017 | Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Firmen räumen bei der IT, Mobilgeräten und Firmen-Hardware am liebsten in der Urlaubsphase auf

28.07.2017 | Unternehmensmeldung

Dunkel war’s, der Mond schien helle: Nachthimmel oft heller als gedacht

28.07.2017 | Geowissenschaften

8,2 Millionen Euro für den Kampf gegen Leukämie

28.07.2017 | Förderungen Preise