Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lebende Zellen unter der Lupe: RUB-Biochemiker entwickeln neues Mikroskop

25.11.2003


Ob Elektronen- oder Rastertunnelmikroskop - die meisten der modernen High-Tech-Mikroskope bieten zwar faszinierende Einblicke in winzige Welten, eignen sich jedoch nicht dazu, lebende Zellen zu untersuchen. Wissenschaftler der Ruhr-Universität Bochum wollen hier Abhilfe schaffen. Sie tüfteln an einem Ionenleitfähigkeitsmikroskop (engl. Scanning Ion Conductance Microscope - SICM), das nicht nur einzelne Zellen zerstörungsfrei sichtbar machen, sondern auch ihre Öffnungen nach außen - die Ionenkanäle - aufspüren kann. Für sein Projekt, die technischen Schwierigkeiten auf dem Weg zur perfekten Zellaufnahme zu überwinden, hat der Biochemiker Stefan Mann ein Stipendium der Wilhelm und Günter Esser Stiftung bekommen.



Vorliebe für Neuronen



Prinzipiell kann ein Ionenleitfähigkeitsmikroskop zwar alle möglichen Sorten von Zellen abbilden, doch Mann haben es besonders die Neuronen mit ihren langen Ärmchen, den Neuriten, angetan. Damit sich seine Testobjekte wie zu Hause fühlen, bietet er ihnen eine Umgebung, die sie kennen. Umschwirrt von einer Fülle von Ionen wie Natrium und Kalium wachsen sie in einer Nährlösung - wie im Körper. Elektrische Impulse, die im Gehirn von Neuron zu Neuron weitergeleitete werden, regeln, wie viele dieser Ionen die Zellwand durch kleine Öffnungen, die sogenannten Ionenkanäle, von außen nach innen oder umgekehrt passieren können.

Dünnes Glasröhrchen als Sensor

Der wichtigste Teil des Mikroskops - sein "Auge" - ist ein feines Glasröhrchen, weniger als hundert mal so dünn wie ein einzelnes Haar und mit einer Salzlösung gefüllt. Zu einem empfindlichen Sensor wird die recht einfache Vorrichtung, sobald ein Strom durch die Salzlösung fließt. Zwischen der Glasspitze und einer Elektrode, die in die Schale mit den Zellkulturen eingelassen ist, liegt nun eine Spannung an, so dass ein Strom aus Ionen durch die Nährlösung fließt.

Gestörter Strom weist Weg zur Zelle

Dieses Grundprinzip ist der Schlüssel zu sehr verschiedenen Fragestellungen. Aufschluss über feinste Volumenänderungen und Verformungen einzelner Zellen erhält man, indem man mit der Spitze des Mikroskops die Nährlösung Schritt für Schritt "abtastet". Dort wo sich eine Zelle befindet, stört diese den Ionenstrom zwischen Glasröhrchen und Elektrode. "Das ist so, als wenn man sich mit dem Fuß auf einen Gartenschlauch stellt. Der Stromfluss wird unterdrückt", erläutert Mann. Das Messergebnis "kein Strom" ist also ein deutliches Zeichen dafür, dass die Glasspitze direkt über der Zelle schwebt. Rastert man mit dieser Methode das Neuron zu mehreren Zeitpunkten ab, entsteht so ein präzises Bild davon, wie sich seine Größe und Oberflächenbeschaffenheit geändert haben.

Oberflächenkarte der Ionenkanäle

Bei einem weiteren Projekt der Bochumer Wissenschaftler, für das sie sich auf das neue Mikroskop verlassen, geht es um die Ionenkanäle, die sich auf der Zelloberfläche öffnen, um Ionen hinein- oder herausströmen zu lassen. Das Weiterleiten von Reizen im Gehirn hängt empfindlich von diesem Austausch ab. Um dieses Kommen und Gehen zu untersuchen, wird das Glasröhrchen behutsam so nahe an eine Stelle der Zelle herangeführt, bis es fast aufsetzt. Nicht einmal ein einzelnes Ion könnte sich jetzt noch zwischen beiden hindurchquetschen. Wenn sich jetzt ein Ionenkanal öffnet, so hinterlässt der Ionenstrom eine unverkennbare Spur im Messsignal. Als Fernziel schwebt Mann eine Art Oberflächenkarte der Zelle vor, in der genau verzeichnet ist, wo und wann sich die mikroskopischen Pforten öffnen. Lagert man die Neuronen vor der Messung in eine Nährlösung mit zusätzlichen Medikamenten oder Hormonen, könnte man so genau untersuchen, wie sich diese Stoffe auf die Reizübertragung im Gehirn auswirken.

Weitere Informationen

Dipl.-Biochem. Stefan Mann, Lehrstuhl für Molekulare Neurobiochemie (PD Dr. Irmgard Dietzel-Meyer), Fakultät für Chemie der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-24170, E-Mail: stefan.mann@ruhr-uni-bochum.de

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Berichte zu: Glasröhrchen Ion Ionenkanal Mikroskop Neuron Nährlösung Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie