Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekül-Container

19.11.2003


Mikroanordnung von winzigen Vesikeln: Molekulare Gefäße im Attoliter-Maßstab

... mehr zu:
»Biotin »Protein »Streptavidin »Vesikel

Die Unterteilung von Flüssigkeiten in winzigste einzelne Kompartimente ist eine grundlegende Herausforderung für die heutige Wissenschaft. So will man mit immer geringeren Substanzmengen auskommen, immer komplexere miniaturisierte Systeme schaffen und sogar individuelle Moleküle sortieren und einzeln untersuchen. Hauptproblem ist weniger, winzige "Behälter" herzustellen und zu füllen, als diese in der Lösung wiederzufinden, zu unterscheiden und gezielt einzeln zu beobachten. Schweizer Forscher von der Eidgenössischen Technischen Hochschule Lausanne und vom IBM Forschungslabor in Rüschlikon, haben eine einfache, schnelle Methode entwickelt, um derartige Super-Mini-Gefäße per Selbstorganisation in einem definierten Nanomuster zu fixieren.

Das Team um Dimitrios Stamou und Horst Vogel drückt zunächst mit einem winzigen "Stempel" ein Muster aus geordneten Pünktchen im Nanometer-Maßstab auf eine Glasoberfläche ("Microcontact Printing"). Als "Tinte" dient Rinderserumalbumin, an das Biotin-Moleküle gekuppelt wurden. Der unbedruckte Teil der Oberfläche wird passiviert. Die Glasoberfläche wird nun mit einem weiteren Protein, Streptavidin, behandelt, das im Zusammenspiel mit Biotin wie ein Zweikomponentenkleber wirkt: Streptavidin heftet sich an die mit Biotin bedruckten Stellen und "aktiviert" sie. Nun wird eine Lösung winziger Vesikel aufgegeben, auf deren Oberfläche sich ebenfalls Biotin-Moleküle befinden. Diese "kleben" am Streptavidin fest und heften so jeweils ein einzelnes Vesikel auf ein gedrucktes Pünktchen. Die Vesikel bestehen, analog den Biomembranen, aus einer Lipid-Doppelschicht. Ihr Fassungsvermögen beträgt einige Attoliter (1 al = 0,000000000000000001 l). Sind sie mit Farbstoff gefüllt, kann man die einzelnen "Behälter" unter dem Fluoreszenzmikroskop deutlich erkennen. Auch chemische Reaktionen können verfolgt werden: Wird beispielsweise das Protein Gramicidin in die umgebende Lösung gegeben, lagert es sich in die Vesikel-Hülle ein und bildet Kanäle, durch die positiv geladene Ionen treten können. Auf diese Weise kann der pH-Wert in den Behältern und damit die Fluoreszenzfarbe des Farbstoffs verändert werden.


Anhand von "Etiketten" aus DNA-Stückchen könnte eine fast beliebige Zahl von Atto-Behältern mit verschiedener Fracht eindeutig identifizierbar gemacht werden. So könnten "Substanzbibliotheken" im Nanomaßstab für parallele chemische Reaktionen hergestellt werden. Besonders interessant aber scheint die Idee, Vesikel direkt aus Zellen zu erzeugen. Jedes Vesikel trägt dann natürliche Rezeptor-Proteine in der Membran und/oder enthält bestimmte Signalmoleküle aus dem Cytosol. Anhand der fixierten Vesikel könnten die Bindung von Pharmawirkstoffen an Rezeptoren sowie die daraufhin ausgelösten Signalkaskaden untersucht werden.

Kontakt: Dr. Dimitrios Stamou
Prof. Dr. H. Vogel
Institute of Biomolecular Sciences
Swiss Federal Institute of Technology
1015 Lausanne
Schweiz

Fax: (+41) 21-639-6190

E-mail: dimitrios.stamou@epfl.ch
horst.vogel@epfl.ch

Angewandte Chemie Presseinformation Nr. 45/2003
Angew. Chem. 2003, 115 (45), 5738 - 5741

ANGEWANDTE CHEMIE
Postfach 101161
D-69451 Weinheim
Tel.: 06201/606 321
Fax: 06201/606 331
E-Mail: angewandte@wiley-vch.de

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.innovations-report.de/html/profile/profil-525.html
http://www.angewandte.org

Weitere Berichte zu: Biotin Protein Streptavidin Vesikel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften