Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ersatzgewebe aus der Retorte

12.11.2003


Nach Unfällen oder bei vielen Erkrankungen ist es nötig, menschliches Gewebe zu ersetzen. Beim tissue engineering sind Komplikationen selten, denn es werden körpereigene Zellen gezüchtet. Für Knorpelersatz ist das Fraunhofer IGB bereits zertifiziert.


Beim Züchten von menschlichen Geweben gibt es viele Laborvorschriften - Sterilität ist nur eine. ©Fraunhofer IGB



Zusammengeklebt ist der Mensch mit Kollagen (griechisch kolla = Leim). Ob in Haut, Knorpel, Sehnen, Bändern, Blutgefäßen, Zähnen oder Knochen - mit rund 25 bis 30 Prozent ist diese Gruppe strukturgebender Proteine bei Säugetieren die häufigste. Entsprechend vielfältig sind die Krankheitserscheinungen. Beispiel Knorpelnekrose: Im Gelenk lösen sich Knorpelstückchen ab und im angrenzenden Gewebe schließlich auf. In solchen pathologischen Fällen oder nach Unfällen benötigt der Mediziner Ersatzgewebe (oder aber Prothesen). Wie bei jeder Transplantation stammt es von einem anderen Körperteil, einem anderen Patienten oder vom Tier. Gerade bei den beiden letzten Spendern muss damit gerechnet werden, dass das transplantierte Gewebe nicht vertragen wird, sich entzündet oder sich wieder auflöst. Bei der jüngeren biomedizinischen Richtung des tissue engineering treten solche Komplikationen dagegen in der Regel nicht auf, denn dabei werden körpereigene Zellen im Labor gezüchtet. Aus ihnen kann das benötigte Gewebe aufgebaut werden.

... mehr zu:
»Ersatzgewebe »Gewebe »IGB »Kollagen


Nun ist auch das Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart für solche Arbeiten zertifiziert: Vor einem Monat stellte die Leitstelle Arzneimittelüberwachung des Regierungspräsidiums in Tübingen eine Herstellungserlaubnis nach § 13 des deutschen Arzneimittelgesetzes aus. "Zunächst bezieht sich diese Erlaubnis auf die Herstellung von Chondrozyten, also Knorpelzellen", sagt Dr. Hans-Georg Eckert, Leiter der Abteilung Zellsysteme. "Damit gehören wir zu einem ganz kleinen Kreis nicht-kommerzieller Einrichtungen in Deutschland, die derartige Zelltherapeutika herstellen dürfen." Die während der Zertifizierung gewonnenen Erfahrungen und die aufgebaute Labor-Infrastruktur soll nun für entsprechende Kooperationsprojekte genutzt werde. Die Wissenschaftler am IGB werden in Zukunft ihre Tätigkeiten auf andere Zellen und Gewebe ausdehnen, beispielsweise Haut-, Knochen-, Blut- oder Nervenzellen. Mit diesem Leistungsspektrum sprechen die Forscher vor allem Spezialkliniken und kleinere Unternehmen an. Diese verfügen zumeist nicht über die Voraussetzungen, die in den Richtlinien der Guten Herstellungspraxis für Arzneimittel definiert sind (Good Manufacturing Practices, GMP).

"Nach einer erfolgreichen Züchtung muss das Gewebe seine spezifische Aufgabe erfüllen", hebt Dr. Ulrike Vettel nur eine Laborarbeit hervor. "Bei Knorpelzellen etwa weisen wir nach, ob die Zellen das gewünschte Kollagen vom Typ II produzieren. Wenn nicht, wird das Gewebe für eine Anwendung am Patienten nicht freigegeben."

Ansprechpartner:
Dr. Hans-Georg Eckert
Telefon 07 11 / 9 70-41 17, Fax -40 47, eck@igb.fraunhofer.de

Dr. Ulrike Vettel
Telefon 07 11 / 9 70-40 51, vet@igb.fraunhofer.de


Dr. Johannes Ehrlenspiel | idw
Weitere Informationen:
http://www.igb.fraunhofer.de/WWW/KF/Biotech_Zellsysteme/start.html
http://www.fraunhofer.de/mediendienst

Weitere Berichte zu: Ersatzgewebe Gewebe IGB Kollagen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics