Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nervenzellen lernen am besten im Team

31.10.2003



f-MRI-Ansichten ins Gehirn, die die Orte maximaler Aktivitätsänderung aufgrund von Lernvorgängen im Bereich der Fingerrepräsentation zeigen. Die Aktivitätsänderung bewirkt, dass kleinere Abstände (rote Kurve) ertastet werden können als vor dem Lernen


Forscher sehen dem Gehirn beim Lernen zu


Lernen ist Nervenzellentraining: Wie ein Muskel durch stete Beanspruchung wächst, so wächst auch der für bestimmte Reize zuständige Bereich im Gehirn, wenn er über längere Zeit stimuliert wird. Besonders gut funktioniert das, wenn mehrere Reize zeitgleich verarbeitet werden müssen (Koaktivierung): Benachbarte Nervenzellen verbessern dann ihre Zusammenarbeit. Diese Effekte konnten die RUB-Forscher Prof. Dr. Martin Tegenthoff (Neurologische Universitätsklinik Bergmannsheil), PD Dr. Hubert Dinse (Institut für Neuroinformatik) und Prof. Dr. Volkmar Nicolas (Radiologische Universitätsklinik Bergmannsheil) im Rahmen einer interdisziplinären Zusammenarbeit mit der funktionellen Kernspintomografie (fMRI) erstmals genau beobachten. Über ihre Ergebnisse berichten sie in der US-Fachzeitschrift NEURON.

Dem Gehirn beim Lernen zusehen


Die funktionelle Kernspintomografie macht möglich, was sich schon Anfang des vergangenen Jahrhunderts der Neurophysiologe Charles S. Sherrington als ideale Untersuchungsmethode für die Hirnfunktion vorstellte: Um die Vorgänge im Hirn beobachten zu können, möge doch jede Nervenzelle, immer wenn sie aktiv ist, wie eine kleine Lampe aufleuchten. Mit der fMRI kann man von außen die Aktivität von Nervenzellen in der Großhirnrinde messen, ohne die Versuchsperson zu belasten.

Die Karte vom Körper liegt im Kopf

Mit dieser Methode lässt sich auch die sog. kortikale Karte betrachten, die jeder Mensch von seiner Körperoberfläche im Kopf hat: Die Verbindungen zwischen Haut und Großhirnrinde sind topographisch angelegt, d.h. benachbarte Punkte auf der Haut werden auch im Gehirn benachbart repräsentiert. Reizt man zwei eng zusammenliegende Punkte auf der Haut, so werden auch im Gehirn nah beieinanderliegende Stellen aktiviert. Lernvorgänge zeigen sich im Gehirn u. a. daran, dass die Kontaktstellen der Informationsübermittlung zwischen einzelnen Nervenzellen (Synapsen) ihre Übertragungseigenschaften verbessern. Das funktioniert dann am besten, wenn die benachbarten Zellen zeitgleich gereizt werden. Um diesem Effekt auf den Grund zu gehen, nahmen die Forscher den Hirnbereich, der die Zeigefingerspitze repräsentiert, genau unter die Lupe.

Wie viele Nadeln fühlt man?

Ausgangspunkt der Untersuchung war die taktile "2-Punkte-Diskriminationsschwelle": Die Neurowissenschaftler ermittelten zunächst die Fähigkeit von Versuchspersonen, zwei Punkte auf ihrer Zeigefingerkuppe räumlich zu unterscheiden. Dazu berührten die Probanden zwei Nadeln, die in unterschiedlichen Abständen zueinander standen. Bis zu einer gewissen Nähe nahmen sie die Spitzen noch als zwei getrennte wahr, standen sie jedoch sehr nahe beisammen, wurden sie als eine Nadel wahrgenommen. Danach ging es ans Lernen: Mithilfe einer kleinen vibrierenden Membran, die auf dem Finger befestigt wurde, reizten die Forscher einen Bereich von etwa einem Zentimeter Durchmesser auf der Zeigefingerkuppe der Probanden drei Stunden lang.

Neue Gehirntopographie nach dem Nervenzellentraining

Den Lernerfolg konnten sie dann nicht nur daran sehen, dass die Versuchspersonen enger beieinander liegende Nadelspitzen unterscheiden konnten als vorher, sondern sie konnten ihn auch mit der funktionellen Kernspintomographie (fMRI) direkt im Gehirn betrachten: Der Bereich des Gehirns, der bei leichter elektrischer Stimulation des Zeigefingers aktiv war, war gut abgegrenzt zu erkennen. Die fMRI-Messung nach den drei Lernstunden zeigte, dass sich das für die Zeigefingerkuppe zuständige Hirnareal deutlich vergrößert und verlagert hatte. "Eine vermehrte Aktivität war ausschließlich im Repräsentationsareal des zuvor gereizten Zeigefingers feststellbar, nicht dagegen im Areal des Zeigefingers der anderen Hand, der nicht koaktiviert wurde", erklären die Forscher.

Komplexe Netzwerke werden ausgebaut

Diese Ausdehnung der Aktivierungsbereiche war in dem Teil des Gehirns zu finden, der als "Eingangstor" für Informationen des Tastsinns in der Großhirnrinde dient (primärer somatosensorischer Kortex). Aber auch in Hirnregionen, die für die weitere, komplexere Informationsverarbeitung zuständig sind (sekundärer somatosensorischer Kortex), stellten die Forscher eine deutliche Zunahme der Hirnaktivität nach dem Lernen fest. "Die Koaktivierung führte somit dazu, dass sich die Aktivierung von komplexen Neuronen-Netzwerken räumlich massiv ausdehnte", fasst Dr. Dinse zusammen. Der Lernerfolg war allerdings zeitlich befristet: Ebenso wie die Veränderung der Wahrnehmungsschwelle bildeten sich die Veränderungen der Hirnaktivität innerhalb von 24 Stunden wieder zurück.

Den Lernerfolg vorhersagen

Die Studie belegt, dass entgegen früheren Annahmen auch im erwachsenen Gehirn in den kortikalen Karten weitreichende Reorganisationsprozesse stattfinden. Diese Prozesse betreffen Bereiche, die millimeter- oder sogar zentimetergroß sind. Besonders interessant ist, dass sich bei Versuchspersonen, deren 2-Punkte-Diskrimination sich am meisten verbessert hatte, auch die aktivierten Hirnbereiche des primären somatosensorischen Kortex am meisten vergrößert hatten. Umgekehrt hatten Probanden, deren aktivierte Hirnbereiche sich nur wenig vergrößert hatten, auch nur eine geringfügig verbesserte Diskriminationsfähigkeit. Das Ausmaß des Lernerfolgs ist also an den Veränderungen der funktionellen Topographie der Hirnrinde ablesbar. "Rückblickend ist der Lernerfolg aus den fMRI Bildern direkt vorhersagbar", so die Forscher.

Passives Lernen könnte helfen, Defizite auszugleichen

Für die Zukunft hoffen die Forscher, ihre Koaktivierungstechnik noch zu verfeinern, so dass die Lernerfolge vielleicht länger anhalten. Auf diese Weise wäre es möglich, Beeinträchtigungen im Gehirn auszugleichen. "Das ist z. B. wichtig für die Altersforschung", erläutert Dr. Dinse, "zumal ältere Menschen, die oft mit mannigfaltigen Defiziten zu kämpfen zu haben, häufig nicht mehr aktiv lernen können oder wollen. Für solche Menschen wäre das passive Lernen durch Koaktivierung eine große Hilfe."

Titelaufnahme

Burkhard Pleger, Ann-Freya Foerster, Patrick Ragert, Hubert R. Dinse, Peter Schwenkreis, Jean-Pierre Malin, Volkmar Nicolas and Martin Tegenthoff: Functional Imaging of Perceptual Learning in Human Primary and Secondary Somatosensory Cortex. In: Neuron, Vol. 40, 643-653, October 30, 2003

Weitere Informationen

PD Dr. Hubert R. Dinse
Institut für Neuroinformatik
der Ruhr-Universität 44780 Bochum
Tel: 0234/32-25565, Fax: -14209
Email: hubert.dinse@neuroinformatik.ruhr-uni-bochum.de

Prof. Dr. Martin Tegenthoff
Neurologische Universitätsklinik
der Ruhr-Universität Bochum in den
Berufsgenossenschaftlichen Kliniken Bergmannsheil
Bürkle-de-la-Champ-Platz 1, 44789 Bochum
Tel: 0234/302-6808, Fax: -6888
Email: martin.tegenthoff@ruhr-uni-bochum.de

Dr. Josef König | idw
Weitere Informationen:
http://www.neuroinformatik.rub.de/thbio/group/neurophys/index_d.html
http://www.bergmannsheil.de/neurologie

Weitere Berichte zu: Dinse Großhirnrinde Hirnbereich Kortex Nadel Nervenzelle Zeigefinger Zeigefingerkuppe

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen