Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nervenzellen lernen am besten im Team

31.10.2003



f-MRI-Ansichten ins Gehirn, die die Orte maximaler Aktivitätsänderung aufgrund von Lernvorgängen im Bereich der Fingerrepräsentation zeigen. Die Aktivitätsänderung bewirkt, dass kleinere Abstände (rote Kurve) ertastet werden können als vor dem Lernen


Forscher sehen dem Gehirn beim Lernen zu


Lernen ist Nervenzellentraining: Wie ein Muskel durch stete Beanspruchung wächst, so wächst auch der für bestimmte Reize zuständige Bereich im Gehirn, wenn er über längere Zeit stimuliert wird. Besonders gut funktioniert das, wenn mehrere Reize zeitgleich verarbeitet werden müssen (Koaktivierung): Benachbarte Nervenzellen verbessern dann ihre Zusammenarbeit. Diese Effekte konnten die RUB-Forscher Prof. Dr. Martin Tegenthoff (Neurologische Universitätsklinik Bergmannsheil), PD Dr. Hubert Dinse (Institut für Neuroinformatik) und Prof. Dr. Volkmar Nicolas (Radiologische Universitätsklinik Bergmannsheil) im Rahmen einer interdisziplinären Zusammenarbeit mit der funktionellen Kernspintomografie (fMRI) erstmals genau beobachten. Über ihre Ergebnisse berichten sie in der US-Fachzeitschrift NEURON.

Dem Gehirn beim Lernen zusehen


Die funktionelle Kernspintomografie macht möglich, was sich schon Anfang des vergangenen Jahrhunderts der Neurophysiologe Charles S. Sherrington als ideale Untersuchungsmethode für die Hirnfunktion vorstellte: Um die Vorgänge im Hirn beobachten zu können, möge doch jede Nervenzelle, immer wenn sie aktiv ist, wie eine kleine Lampe aufleuchten. Mit der fMRI kann man von außen die Aktivität von Nervenzellen in der Großhirnrinde messen, ohne die Versuchsperson zu belasten.

Die Karte vom Körper liegt im Kopf

Mit dieser Methode lässt sich auch die sog. kortikale Karte betrachten, die jeder Mensch von seiner Körperoberfläche im Kopf hat: Die Verbindungen zwischen Haut und Großhirnrinde sind topographisch angelegt, d.h. benachbarte Punkte auf der Haut werden auch im Gehirn benachbart repräsentiert. Reizt man zwei eng zusammenliegende Punkte auf der Haut, so werden auch im Gehirn nah beieinanderliegende Stellen aktiviert. Lernvorgänge zeigen sich im Gehirn u. a. daran, dass die Kontaktstellen der Informationsübermittlung zwischen einzelnen Nervenzellen (Synapsen) ihre Übertragungseigenschaften verbessern. Das funktioniert dann am besten, wenn die benachbarten Zellen zeitgleich gereizt werden. Um diesem Effekt auf den Grund zu gehen, nahmen die Forscher den Hirnbereich, der die Zeigefingerspitze repräsentiert, genau unter die Lupe.

Wie viele Nadeln fühlt man?

Ausgangspunkt der Untersuchung war die taktile "2-Punkte-Diskriminationsschwelle": Die Neurowissenschaftler ermittelten zunächst die Fähigkeit von Versuchspersonen, zwei Punkte auf ihrer Zeigefingerkuppe räumlich zu unterscheiden. Dazu berührten die Probanden zwei Nadeln, die in unterschiedlichen Abständen zueinander standen. Bis zu einer gewissen Nähe nahmen sie die Spitzen noch als zwei getrennte wahr, standen sie jedoch sehr nahe beisammen, wurden sie als eine Nadel wahrgenommen. Danach ging es ans Lernen: Mithilfe einer kleinen vibrierenden Membran, die auf dem Finger befestigt wurde, reizten die Forscher einen Bereich von etwa einem Zentimeter Durchmesser auf der Zeigefingerkuppe der Probanden drei Stunden lang.

Neue Gehirntopographie nach dem Nervenzellentraining

Den Lernerfolg konnten sie dann nicht nur daran sehen, dass die Versuchspersonen enger beieinander liegende Nadelspitzen unterscheiden konnten als vorher, sondern sie konnten ihn auch mit der funktionellen Kernspintomographie (fMRI) direkt im Gehirn betrachten: Der Bereich des Gehirns, der bei leichter elektrischer Stimulation des Zeigefingers aktiv war, war gut abgegrenzt zu erkennen. Die fMRI-Messung nach den drei Lernstunden zeigte, dass sich das für die Zeigefingerkuppe zuständige Hirnareal deutlich vergrößert und verlagert hatte. "Eine vermehrte Aktivität war ausschließlich im Repräsentationsareal des zuvor gereizten Zeigefingers feststellbar, nicht dagegen im Areal des Zeigefingers der anderen Hand, der nicht koaktiviert wurde", erklären die Forscher.

Komplexe Netzwerke werden ausgebaut

Diese Ausdehnung der Aktivierungsbereiche war in dem Teil des Gehirns zu finden, der als "Eingangstor" für Informationen des Tastsinns in der Großhirnrinde dient (primärer somatosensorischer Kortex). Aber auch in Hirnregionen, die für die weitere, komplexere Informationsverarbeitung zuständig sind (sekundärer somatosensorischer Kortex), stellten die Forscher eine deutliche Zunahme der Hirnaktivität nach dem Lernen fest. "Die Koaktivierung führte somit dazu, dass sich die Aktivierung von komplexen Neuronen-Netzwerken räumlich massiv ausdehnte", fasst Dr. Dinse zusammen. Der Lernerfolg war allerdings zeitlich befristet: Ebenso wie die Veränderung der Wahrnehmungsschwelle bildeten sich die Veränderungen der Hirnaktivität innerhalb von 24 Stunden wieder zurück.

Den Lernerfolg vorhersagen

Die Studie belegt, dass entgegen früheren Annahmen auch im erwachsenen Gehirn in den kortikalen Karten weitreichende Reorganisationsprozesse stattfinden. Diese Prozesse betreffen Bereiche, die millimeter- oder sogar zentimetergroß sind. Besonders interessant ist, dass sich bei Versuchspersonen, deren 2-Punkte-Diskrimination sich am meisten verbessert hatte, auch die aktivierten Hirnbereiche des primären somatosensorischen Kortex am meisten vergrößert hatten. Umgekehrt hatten Probanden, deren aktivierte Hirnbereiche sich nur wenig vergrößert hatten, auch nur eine geringfügig verbesserte Diskriminationsfähigkeit. Das Ausmaß des Lernerfolgs ist also an den Veränderungen der funktionellen Topographie der Hirnrinde ablesbar. "Rückblickend ist der Lernerfolg aus den fMRI Bildern direkt vorhersagbar", so die Forscher.

Passives Lernen könnte helfen, Defizite auszugleichen

Für die Zukunft hoffen die Forscher, ihre Koaktivierungstechnik noch zu verfeinern, so dass die Lernerfolge vielleicht länger anhalten. Auf diese Weise wäre es möglich, Beeinträchtigungen im Gehirn auszugleichen. "Das ist z. B. wichtig für die Altersforschung", erläutert Dr. Dinse, "zumal ältere Menschen, die oft mit mannigfaltigen Defiziten zu kämpfen zu haben, häufig nicht mehr aktiv lernen können oder wollen. Für solche Menschen wäre das passive Lernen durch Koaktivierung eine große Hilfe."

Titelaufnahme

Burkhard Pleger, Ann-Freya Foerster, Patrick Ragert, Hubert R. Dinse, Peter Schwenkreis, Jean-Pierre Malin, Volkmar Nicolas and Martin Tegenthoff: Functional Imaging of Perceptual Learning in Human Primary and Secondary Somatosensory Cortex. In: Neuron, Vol. 40, 643-653, October 30, 2003

Weitere Informationen

PD Dr. Hubert R. Dinse
Institut für Neuroinformatik
der Ruhr-Universität 44780 Bochum
Tel: 0234/32-25565, Fax: -14209
Email: hubert.dinse@neuroinformatik.ruhr-uni-bochum.de

Prof. Dr. Martin Tegenthoff
Neurologische Universitätsklinik
der Ruhr-Universität Bochum in den
Berufsgenossenschaftlichen Kliniken Bergmannsheil
Bürkle-de-la-Champ-Platz 1, 44789 Bochum
Tel: 0234/302-6808, Fax: -6888
Email: martin.tegenthoff@ruhr-uni-bochum.de

Dr. Josef König | idw
Weitere Informationen:
http://www.neuroinformatik.rub.de/thbio/group/neurophys/index_d.html
http://www.bergmannsheil.de/neurologie

Weitere Berichte zu: Dinse Großhirnrinde Hirnbereich Kortex Nadel Nervenzelle Zeigefinger Zeigefingerkuppe

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzen gegen Staunässe schützen
17.10.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Erweiterung des Lichtwegs macht winzige Strukturen in Körperzellen sichtbar
17.10.2017 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz