Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Honigbienen ihre Geschwister ausbrüten

13.10.2003


Bei der Aufzucht ihrer Brut betätigen sich Bienen als lebende Heizkessel: Sie sitzen scheinbar untätig in einer Wabenzelle und erhitzen ihren Körper durch ein hochfrequentes Zittern der Flugmuskulatur. Die abgestrahlte Wärme hält den Nachwuchs in den umliegenden Zellen so warm, dass er gut gedeihen kann. Das haben die Bienenforscher von der Uni Würzburg entdeckt, und das "Journal of Experimental Biology" wird demnächst darüber berichten.


Diese "Heizerbiene" hat ihre Brustmuskulatur auf über 40 Grad Celsius (gelb) erwärmt, um ihr Brutgeschäft zu erledigen. Die thermographische Aufnahme zeigt die von den Muskeln ausgehende Wärme als schmetterlingsförmigen Abdruck auf der Biene.


Die Brutregion im Nest von Honigbienen ist nahezu geschlossen verdeckelt. Einzelne leere Zellen werden von Heizerbienen zum effektiven "Erbrüten" ihrer Schwestern genutzt. Foto: Marco Kleinhenz, © Beegroup Würzburg



Wenn Honigbienen heranwachsen, ist ihr etwa zehntägiges Dasein als Puppe besonders kritisch, weil dann der Umbau von der Larve zum erwachsenen Insekt stattfindet. Diese Verwandlung muss in einem sehr engen Temperaturbereich vor sich gehen, nämlich zwischen 33 und 36 Grad Celsius. Nur dann entstehen gesunde und kluge Bienen - klug in der Hinsicht, dass sie den Schwänzeltanz und andere Formen der Kommunikation beherrschen. Aus diesem Grund brüten die Tiere ihre kleinen Schwestern regelrecht aus - in der Tat handelt es sich um Geschwister und nicht um Kinder, denn schließlich stammt der gesamte Nachwuchs von derselben Königin ab.

... mehr zu:
»Biene »Honigbiene »Wabenzellen »Wärme


Das Brutwärmeverhalten der Bienen entzieht sich weitestgehend den menschlichen Sinnen. Doch mit Hilfe modernster Wärmebildtechnik haben an der Uni Würzburg Marco Kleinhenz und Brigitte Bujok aus der Bienengruppe - die sich selbst "Beegroup" nennt - unter Leitung von Jürgen Tautz und in Kooperation mit Stefan Fuchs (Oberursel) aufgeklärt, welche Strategien die Bienen für die Heizung ihres Brutnestes erfunden haben.

Dass die Wärme mit Hilfe der Flugmuskulatur erzeugt wird, war bekannt. Dabei kann sich der Brustabschnitt einer Biene auf über 40 Grad Celsius aufheizen. Dieser Prozess verbraucht im Sommer mehr als die Hälfte der in den Stock eingetragenen Energie. Nektar dient also in erster Linie als Brennstoff zur Klimatisierung des Brutnests und weniger als Futter.

Wenn der Brustabschnitt einer "Heizerbiene" heiß genug ist, nutzt diese zwei Strategien, um ihre Wärme effektiv auf die Puppen zu übertragen, die einzeln in verdeckelten Wabenzellen ruhen. Entweder presst die Biene ihre Brust fest auf die Deckel der Zellen, so dass die darunter liegende Puppe die Wärme abbekommt. Dieses Verhalten haben die Würzburger Zoologen schon 2002 beschrieben.

Effektiver ist aber die zweite Strategie, die Tautz und seine Mitarbeiter nun entdeckt haben. Dabei machen die Bienen von einer architektonischen Besonderheit des Brutnestes Gebrauch: Eingestreut in die flächig verdeckelte Brutregion finden sich immer wieder leere Zellen. Darin entdeckten die Forscher bewegungslose, aber hoch aufgeheizte Bienen. Diese Heizerinnen können durch die sechseckige Form der Wabenzellen bis zu sechs umliegende Puppen gleichzeitig bebrüten. "Besonders eifrige Bienen verbringen bis zu einer Stunde heizend in solchen Wabenzellen", sagt Tautz.

Für diese neuen Erkenntnisse aus Würzburg bekamen Marco Kleinhenz und Brigitte Bujok insgesamt zwei Mal auf der jährlich stattfindenden Tagung der Arbeitsgemeinschaft der Bieneninstitute einen Preis für den besten studentischen Beitrag. Ihre Forschungsergebnisse werden am 24. Oktober 2003 vom "Journal of Experimental Biology" online veröffentlicht und dort von den Herausgebern als besonders beachtenswertes "Highlight" eingestuft. Die Druckversion erscheint im Dezember.

Die physikalischen Grundlagen der Wärmeausbreitung in Bienenwaben sind auch für die technische Wärmedämmung, etwa in Gebäuden, interessant. Darum untersucht die "Beegroup" von Tautz diesen Aspekt derzeit in Kooperation mit dem Bayerischen Zentrum für Angewandte Energieforschung e.V. (ZAE Bayern) in Würzburg.

Weitere Informationen: Prof. Dr. Jürgen Tautz, Tel. 0931 - 888-4319, Fax -4309, tautz@biozentrum.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Berichte zu: Biene Honigbiene Wabenzellen Wärme

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

10. Cottbuser Medienrechtstage zu »Fake News, Hate Speech und Whistleblowing«

18.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit dem Umzug ins Baufritz-Haus kehrte die Gesundheit zurück

19.09.2017 | Unternehmensmeldung

Parasitenflirt: Molekulare Kamera zeigt Paarungszustand von Bilharziose-Erregern in 3D

19.09.2017 | Biowissenschaften Chemie

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungsnachrichten