Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gen kontrolliert Kristallwachstum

10.10.2003


Otolithen (Ohr-Steine) aus dem Innenohr von sieben Tage alten Zebrafischen. Otolithen bestehen aus Kalziumkarbonat-Kristallen, die ihrerseits in eine Proteinmatrix eingebettet sind. Die Funktion der Otolithen besteht darin, die auf den Rezeptorzellen des Ohres lastende Masse zu erhöhen, wodurch die Sensitivität der Rezeptorzellen gegenüber Scherkräften gesteigert wird. Die Gestaltveränderungen der Otolithen werden durch das schrittweise Herunterregulieren der Aktivität des Starmaker-Gens bewirkt. Im Hintergrund befindet sich ein Wildtyp-Otolith, daneben ein sternförmiger Otolith. Das sternförmige Erscheinungsbild wird durch Reduktion der Starmaker-Proteinaktivität verursacht. Das Starmaker-Protein ist Bestandteil der organischen Proteinmatrix der Otolithen. Eine Verringerung der Starmaker-Konzentration führt zu einem verstärkt unkontrollierten Wachstum von Kalziumkarbonat-Kristallen. Der kugelförmige und der sternförmige Otolith bestehen aus dem Kalziumkarbonat-Polymorph Aragonit. Hingegen setzt sich der im Vordergrund befindliche Otolith, bei dem das starmaker-Gen nahezu ausgeschaltet ist, aus dem Kalziumcarbonat-Polymorph Kalzit zusammen. Bild: Max-Planck-Institut für Entwicklungsbiologie


Ultradünnschnitt durch das Innenohr eines fünf Tage alten Zebrafisches. Mit Hilfe eines Antikörpers (rote Farbe), der das Starmaker-Protein erkennt, konnten die Forscher des Max-Planck-Instituts zeigen, dass das Starmaker-Protein Bestandteil der Organischen-Matrix der Otolithen ist und in den Zellen des Neuroepitheliums gebildet wird. Die Zellkerne (blau) sind mit einem Zellkernmarker angefärbt. Bild: Max-Planck-Institut für Entwicklungsbiologie


Max Planck Biologen gelingt erstmals der Nachweis, dass Wachstum und Gitterbildung von Biomineralien unter genetischer Kontrolle stehen

... mehr zu:
»Gen »Kalziumkarbonat »Otolithen »Protein

Wenn Lebewesen sich bewegen, hilft ihnen ihr Gleichgewichtssinn, sich im Raum zu orientieren. Das zuständige Gleichgewichtsorgan im Ohr der Wirbeltiere enthält kleine steinartige Strukturen, so genannte Otolithe, die Reize wie Schwingungen oder Beschleunigung verstärken und an die Sinneszellen im Ohr weiterleiten. Diese Biomineralien sind aus kristallinem Kalziumkarbonat und organischem Material, wie Proteinen, aufgebaut und haben eine charakteristische Form und Größe. Bisher war nicht bekannt, welche Faktoren diesen Partikeln ihre Form geben und ihre Größe kontrollieren. Wissenschaftler des Max-Planck-Instituts für Entwicklungsbiologie in Tübingen und des European Synchrotron in Grenoble/Frankreich haben jetzt ein neues Gen im Zebrafisch entdeckt und charakterisiert, das für die Bildung der Otolithen bei Fischen nötig ist. Die Forscher konnten nachweisen, dass das Genprodukt, Starmaker, Bestandteil der Otolithen ist und dass sein Verlust zu einer dramatischen Veränderung der äußeren Form des Otolithen von kugel- zu sternförmig führt. Unterdrückten die Forscher die Produktion des Proteins, veränderte sich zudem die Gitterstruktur des Kalziumkarbonats in den Otolithen (Science, 10. Oktober 2003).

Das Ohr von Zebrafisch-Larven enthält anfangs zwei, später dann drei steinartige Strukturen, die Otolithen. Sie bestehen größtenteils aus Kalziumkarbonat und einem geringen Anteil an Proteinen und Glycoproteinen. Die an Kieselsteine erinnernden Otolithen sitzen, durch eine gelatinöse Masse verbunden, auf Feldern von Sinneszellen auf und verstärken Signale wie Beschleunigung oder Geräusche. Auf der Suche nach Genen, die die Bildung dieser Partikel beeinflussen, sind Wissenschaftler im Max-Plack-Institut für Entwicklungsbiologie in Tübingen auf das menschliche dentin sialophosphoprotein Gen, DSPP, gestoßen. Mutationen in diesem Gen führen bei den Betroffenen zu mangelnder Mineralisierung der Zähne und Hörverlust. Daher nahmen die Forscher an, dieses Protein könnte auch in der Otolithenbildung eine Rolle spielen.


Durch den Sequenzvergleich von Zebrafisch-Genen mit DSPP identifizierten die Wissenschaftler das neue Gens starmaker. Wie das verwandte DSPP hat das Starmaker-Protein einen ungewöhnlich hohen Anteil an sauren Aminosäuren und ist extrem hydrophil. Eine anschließende In situ Expressionsanalyse des Gens zeigte, dass starmaker tatsächlich beinahe ausschließlich im Ohr und im Seitenlinienorgan, das die gleichen Sinneszellen wie das Ohr enthält, angeschaltet ist.

Die Tübinger Biologen nutzten dann die so genannte Morpholino-Antisense-Technik, um die Funktion von starmaker in dem sich entwickelnden Fischohr zu untersuchen. Diese Technik verhindert die Produktion des Proteins. Daraus resultierende morphologische Veränderungen können dann Aufschluss geben über die Rolle, die das Protein tatsächlich spielt. Die Unterdrückung der Starmaker Funktion hatte einen sehr spezifischen Effekt auf die Otolithen: Mit steigender Dosis des Antisense-Morpholinos veränderte sich ihre Form von kugel- zu sternförmig (vgl. Abb. 1). Der komplette Verlust des Proteins führte zu Otolithen, die in ihrem Aussehen stark reinen Kristalle ähneln. Die betroffenen Zebrafischlarven zeigten keine weiteren morphologischen Veränderungen, hatten jedoch Gleichgewichtsstörungen.

Mit einem Starmaker-spezifischen Antikörper wiesen die Wissenschaftler hohe Mengen des Proteins in den runden Otolithen nach (vgl. Abb. 2); hingegen enthielten die kristallförmigen Ohrsteinchen kein Protein. Damit war klar, dass das Starmaker-Gen direkt an der Kristallisation des Kalziumkarbonats im Otholithen beteiligt ist. Doch um besser zu verstehen, was zu den morphologischen Veränderungen der Otolithen führt, haben die Wissenschaftler die verschiedenen Otolithenformen am Synchrotron in Grenoble, Frankreich, mit Hilfe der Röntgenstrahl-Diffraktionsanalyse untersucht. Dabei stellte sich heraus, dass sich sowohl Größe als auch Kristallgitter der Kalziumkarbonat-Kristalle in den Otolithen unterschieden. Die unmodifizierten (Wildtyp) und die sternförmigen Otolithen enthielten Aragonit-Kristalle, die sich lediglich in ihrer Größe unterschieden. Hingegen bestehen die Otolithen, in denen überhaupt kein Starmaker-Protein mehr vorhanden ist, aus großen Kristallen mit der stabileren Kalzit-Gitterstruktur. Somit haben diese Experimente gezeigt, wie ein Protein das Wachstum eines Kristalls hemmen und zusätzlich dessen Gitterstruktur beeinflussen kann.

Damit ist es den Tübinger Biologen unter Verwendung molekularbiologischer, biologischer und physikalischer Methoden erstmals gelungen, die genetische Kontrolle eines anorganischen Prozesses - der Kristallisation - nachzuweisen. Diese Forschungsergebnisse sind einerseits von medizinischer Relevanz: Sie liefern Hinweise, welche Rolle verwandte menschliche Proteine in der Biogenese von Otoconien, Kalziumkarbonat-haltige Biomineralien in unserem Gleichgewichtsorgan, spielen können. Andererseits sind die Resultate von großem Interesse für die Kristallforschung, da erstmals eine direkte Interaktion von biologischer Materie mit Kristallen in einem lebenden Organismus nachgewiesen wurde.

Weitere Informationen erhalten Sie von:

Christian Söllner
Max-Planck-Institut für Entwicklungsbiologie, Tübingen
Tel.: 07071 - 601-378, Fax.: -305
E-Mail: christian.soellner@tuebingen.mpg.de

Christian Söllner | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.tuebingen.mpg.de

Weitere Berichte zu: Gen Kalziumkarbonat Otolithen Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik