Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kristallstruktur des Photosystems II mit hoher Auflösung ermittelt

08.02.2001


Protein isoliert aus Cyanobakterium "Synechococcus elongatus"

Grüne Pflanzen, Algen und Cyanobakterien gewinnen ihre Energie durch Photosynthese. Mit Hilfe des Sonnenlichts wandeln sie Kohlendioxid und Wasser in Zucker und Sauerstoff um. Die chemische Grundgleichung ist sehr einfach, der Mechanismus jedoch äußerst kompliziert und noch nicht vollständig aufgeklärt. Zwei große Protein-Cofaktorkomplexe - Bestandteile der photosynthetischen Thykaloidmembran in den Chloroplasten - sind daran maßgeblich beteiligt: die Photosysteme I und II (PS I, PS II). Im PS II finden die ersten Teilschritte der Photosynthese statt. Hier werden den Wassermolekülen Elektronen mit Hilfe der Lichtenergie "entzogen", auf ein Chinonsystem übertragen und Sauerstoff in die Atmosphäre freigesetzt. PS II besteht aus einem Antennenkomplex, der die Lichtenergie einfängt (Chlorophyllmoleküle), einem zentralen Bereich mit Reaktionszentrum und einem sauerstoffentwickelnden Komplex.

Der Arbeitsgruppe um Prof. Wolfram Saenger, vom Institut für Chemie/Kristallographie der Freien Universität Berlin, gelang es nun mit Hilfe der Röntgendiffraktion, die Kristallstruktur von PS II zu ermitteln - bei einer Auflösung von 3.8 Å. Die Forschungsarbeiten wurden gemeinsam mit der Arbeitsgruppe um Prof. Horst-Tobias Witt und Dr. Petra Fromme vom Max-Volmer-Institut für Biophysikalische Chemie und Biochemie der TU Berlin durchgeführt. Hier wurde das Membranprotein - molekulare Masse etwa 700.000 Dalton - aus dem thermophilen Cyanobakterium "Synechococcus elongatus" isoliert, in Lösung gebracht und schließlich in vollständig hydratisierter Form kristallisiert.

Die FU-Kristallographen führten die Röntgendiffraktions-Experimente bei tiefen Temperaturen (100K) mittels Synchrotronstrahlung in Hamburg, Triest (I) und Grenoble (F) durch. Das so genannte Phasenproblem der Kristallographie wurde durch Schwermetalldotierung gelöst. Hierbei wird der Kristall mit einer Schwermetallsalzlösung getränkt, einzelne Metallatome in Form von Komplexen in den Kristall eingebaut. Erst nach diesem sehr langwierigen Schritt lassen sich die Phasenwinkel, damit die Elektronendichteverteilung im Molekül und letztlich die Gesamtstruktur ermitteln.

Das Protein PS II liegt im Kristall als C2-symmetrisches Dimer vor, mit einer Breite von 190 Å und einer Höhe von etwa 100 Å. Es besteht aus 17 Untereinheiten, von denen 14 innerhalb der Membran liegen. Die Auflösung von 3.8 Å ermöglicht zwar nicht den Blick auf jedes einzelne Atom, wohl aber auf Atomverbände und gibt damit genaue Details der Sekundär- und Tertiärstruktur preis. Eindeutig konnten Position und Struktur mehrerer Cofaktoren (32 Chlorophylle, 2 Phyllochinone, 2 Pheophytine, 2 Hämgruppen, 1 Eisenatom) sowie erste Umrisse der Struktur des sauerstoffentwickelnden Komplexes bestimmt werden - ein Cluster aus vier Manganatomen. An dieser Stelle werden die Wassermoleküle durch das Kation-Enzym P680+ schrittweise oxidiert und Sauerstoff sowie Wasserstoffionen freigesetzt. Letztere werden benutzt, um den Energiespeicher ATP zu synthetisieren.

An dem Projekt waren von Seiten der TU Berlin Horst-Tobias Witt, Athina Zouni, Jan Kern und Petra Fromme beteiligt. Die Struktur wurde von Wolfram Saenger, Norbert Krauß, und Peter Orth (FU Berlin) aufgeklärt. Am 8. Februar 2001 wurden die Forschungsergebnisse in "Nature" publiziert. Zur Zeit arbeitet das Team an einer Veröffentlichung über das Photosystem I, welches ähnlich komplizierter aufgebaut ist wie PS II und - bei einer Auflösung von 2.5 Å - noch wesentlich mehr Detail verspricht.

Die Grundlagenforschung wird von der Deutschen Forschungsgemeinschaft gefördert (Sfb 312 und Sfb 498). Sie soll zum besseren Verständnis der Photosynthese und damit generell der Umwandlung von Lichtenergie in chemische oder mechanische Energie beitragen. Eine notwendige Voraussetzung, um umwelt- und ressourcenschonende Energieformen für die Zukunft entwickeln zu können. Die Natur macht es in raffinierter Weise vor.

Catarina Pietschmann


Nähere Informationen gibt Ihnen gern:
Univ.-Prof. Dr. Wolfram Saenger, Fachbereich Biologie-Chemie-Pharmazie der Freien Universität Berlin, Institut für Chemie/Kristallographie, Takustr. 6, 14195 Berlin-Dahlem, Tel.: 030 / 838-53412, Fax: 030 / 838-56702, E-Mail: saenger@chemie.fu-berlin.de

Ilka Seer | idw

Weitere Berichte zu: Kristall Kristallstruktur Lichtenergie Photosystem Sauerstoff

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Buche in die Gene schauen - Vollständiges Genom der Rotbuche entschlüsselt
11.12.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Mit den Augen der Biene: Zoologe der Uni Graz entwickelt Verfahren zur Verbesserung dunkler Bilder
11.12.2017 | Karl-Franzens-Universität Graz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Goldmedaille für die praktischen Ergebnisse der Forschungsarbeit bei Nutricard

11.12.2017 | Unternehmensmeldung

Nachwuchs knackt Nüsse - Azubis der Friedhelm Loh Group für Projekte prämiert

11.12.2017 | Unternehmensmeldung

Mit 3D-Zellkulturen gegen Krebsresistenzen

11.12.2017 | Medizin Gesundheit