Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vom Rinderpansen zum Magengeschwür

24.09.2003


Entschlüsselung des Genoms eines Rinder-Bakteriums hilft, verantwortliche Gene für bakterielle Infektionen beim Menschen zu identifizieren


Das Bakterium Wolinella succinogenes ist ein harmloser Bewohner des Rinderpansens und eng mit den Krankheitserregern Helicobacter und Campylobacter verwandt.
Foto: Max-Planck-Institut für Entwicklungsbiologie


Genomatlas von Wolinella succinogenes. Die auf den beiden DNA-Strängen kodierteten 2046 Gene sind farbig markiert und wurden funktionell kategorisiert. Durch Vergleich mit bereits bekannten Genen können so die physiologischen Eigenschaften eines Organismus vorhergesagt werden.
Foto: Max-Planck-Institut für Entwicklungsbiologie



In den letzten Jahre haben sich die Hinweise gemehrt, wonach schwerwiegende Krankheiten nicht nur auf körpereigene Ursachen zurückzuführen sind, sondern ihren Ausgang oftmals mit der Besiedelung des menschlichen Körpers durch krankheitserregenden Bakterien nehmen. Das zeigt sich besonders deutlich im Fall des kanzerogenen Bakteriums Helicobacter pylori, das als Erreger chronischer Gastritis, die im weiteren Verlauf zu Magenkrebs führen kann, identifiziert wurde. Zudem stellte sich in jüngster Zeit heraus, dass eine Infektion mit dem zu Helicobacter verwandten Bakterium Campylobacter jejuni zu akuten Durchfallerkrankungen sowie zu der mit Lähmungserscheinungen einhergehenden Autoimmunkrankheit Guillain-Barré-Syndrom führt. Wissenschaftler des Max-Planck-Institut für Entwicklungsbiologie haben nun gemeinsam mit Kollegen der Goethe-Universität Frankfurt, der Universität Bielefeld sowie des Rechenzentrums Garching der Max-Planck-Gesellschaft die Genomsequenz eines nahen Verwandten, des nicht-pathogenen Bakteriums Wolinella succinogenes entschlüsselt, das im Pansen von Rindern lebt. Durch vergleichende Genomanalyse ist es nun möglich, jene Gene systematisch zu identifizieren, die den Infektionsstrategien der beiden Krankheitserreger zugrunde liegen (PNAS, early edition, 19. September 2003).



Die vollständige Entschlüsselung der Erbinformation von Wolinella succinogenes, einem weiteren Vertreter der Bakteriengattung von Helicobacter pylori und Campylobacter jejuni, erlaubt jetzt erstmals den Vergleich dieses harmlosen Bewohners des Rinderpansens mit seinen den Menschen krankmachenden Verwandten. In einer vergleichenden Genomanalyse können sowohl die Gemeinsamkeiten aller Organismen als auch deren spezifische Unterschiede in der Erbinformation analysiert werden. Der einer Gattung gemeinsame Gen-Pool ist repräsentativ für generelle Strategien, die Bakterien einsetzen, um sich in einem Wirt erfolgreich anzusiedeln. Im Gegensatz dazu liefert der Organismus-spezifische Anteil am Genom Hinweise auf Gene, die für die Besiedelung eines bestimmten Wirts und bestimmter Gewebetypen notwendig sind. Dies erlaubt Rückschlüsse auf die spezifischen Wechselwirkungen zwischen Erreger und Wirt.

Besonders auffallend im Genom des nicht-krankheitserregenden Bakteriums Wolinella succinogenes ist eine große Anzahl von Genen, die bisher nur in krankheitserregenden Bakterien vermutet wurden und dort essentiell für eine erfolgreiche Infektion sind. So enthalten alle drei Organismen einen Sekretionsapparat, der im Falle von Helicobacter und Campylobacter zur Ausschüttung von Zellgiften in die Wirtszelle benutzt wird. Darüber hinaus kodieren Wolinella und Campylobacter ein so genanntes Invasionsgen, das essentiell für die Besiedlung der Wirtszelle ist. Eine weitere besonders interessante Parallele zwischen Wolinella und Campylobacter besteht im Vorhandensein eines Glykosilierungssystems, das dazu dient, spezielle Zuckerrest-Gruppen an bakterielle Proteine anzuheften. Bakterien benutzen dieses System in einer Art molekularem Mimikry, um der Immunantwort des Wirtes zu entgehen. Im Fall von Campylobacter jejuni kann dies beim Menschen zu der Autoimmunkrankheit Guillain-Barré-Syndrom führen.

Zahlreiche Gene, die für pathogene Symptome verantwortlich gemacht werden, liegen auf wenigen kompakten Abschnitten des Erbguts, den so genannten Pathogenitätsinseln. Man vermutet, dass es sich hierbei um mobile DNA-Abschnitte handelt, die rasch zwischen Bakterien verschiedener Arten ausgetauscht werden können. Diesen Austausch von Genmaterial über Organismusgrenzen hinweg, auch "Horizontaler Gentransfer" genannt, macht man daher für die hohe Variabilität und Anpassungsfähigkeit pathogener Bakterien verantwortlich. Neue komplexe Eigenschaften, die durch einfache Mutation nicht zu erreichen wären, können dadurch angenommen werden.

Ein Vergleich der Genomgröße der drei Organismen zeigt, dass das Wolinella-Chromosom etwa ein Drittel mehr an genetischer Information besitzt. Das sind ungefähr 450 zusätzliche Gene, die beispielweise einen Enzymkomplex zur Stickstofffixierung kodieren, den man in ähnlicher Form etwa bei Blaualgen findet. Darüber hinaus enthält Wolinella - bezogen auf die Genomgröße - die größte Anzahl an signalverarbeitenden Sensoren und Rezeptoren (Zwei-Komponenten-Transduktions-System), die je in einem Bakterium gefunden wurden.

Im Gegensatz dazu können die kleineren Genome der beiden verwandten Pathogene als Gradmesser dafür angesehen werden, wie stark sich diese Bakterien an ihren menschlichen Wirtsorganismus angepasst haben. Dieses Phänomen wird auch als Genomdegradation bezeichnet. Anhand der neu gewonnenen Daten lassen sich durch den subtraktiven Vergleich der genetischen Ausstattung aller drei Bakterienspezies einzelne Gene identifizieren, die dann in großem Maßstab in Reihenversuchen ausgeschaltet und analysiert werden können. In Zusammenarbeit mit anderen Forschergruppen in Deutschland und England werden die Tübinger Entwicklungsbiologen nun Gene, die durch die vergleichende Genomanalyse mit Wolinella identifiziert worden sind, im Tiermodell auf ihre mögliche Funktion im Infektionsprozess untersuchen.

Weitere Informationen erhalten Sie von:

PD Dr. Stephan C. Schuster
Max-Planck-Institut für Entwicklungsbiologie, Tübingen
Tel.: 07071-601-440, Fax.: -442
E-Mail: stephan.schuster@tuebingen.mpg.de

PD Dr. Stephan C. Schuster | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.tuebingen.mpg.de

Weitere Berichte zu: Bakterium Campylobacter Gen Genom Helicobacter Wirt

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics