Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unscharfe Signale schärfen Nervenzellen den Blick

19.09.2003


Abb. 1: Realistisches Modell der HS- (rot) und der CH-Zellen (grün). Links unten ein Ausschnitt mit Modellzellen mit elektrischen Synapsen (weiß).

Abb. 2: Spannungsverteilung in HS- und CH- Zellen im Sehzentrum der Schmeißfliege. Linkes Bild: Eine lokale Reizung der HS-Zelle führt zu einer räumlich eng begrenzten Aktivitätsverteilung. Rechtes Bild: In einer mit der HS im dendritischen Netzwerk verbundenen CH-Zelle breitet sich dagegen das Signal sehr viel weiter aus.

Fotos: Max-Planck-Institut für Neurobiologie


Abb. 3: Modellierung der Spannungsleitung zwischen HS-, CH- und FD-Zelle. Die Kontrasterhöhung des Signals aus den Bewegungsrezeptorzellen (EMD Array) an FD-Zelle wird durch die Unschärfe des hemmenden Inputs aus den CH-Zellen erzielt.

Foto: Max-Planck-Institut für Neurobiologie


Max-Planck-Wissenschaftlern gelingt Nachweis, dass die Objektwahrnehmung bei Fliegen auf einem dendritischen Netzwerk beruht


Wir erkennen Bilder, Formen oder bewegte Objekte vor einem sich bewegenden Hintergrund dank der fein abgestimmten Verrechnung von Impulsen in den Sehzentren des Gehirns. Wissenschaftlern der Abteilung Neuronale Informationsverarbeitung des Max-Planck-Instituts für Neurobiologie in Martinsried ist es jetzt im Computermodell erstmals gelungen, Details jener Nervenkontakte aufzuklären, die zwischen drei verschiedenen Typen von Nervenzellen im Sehzentrum der Schmeißfliege bestehen. Die Neurobiologen konnten zeigen, dass Nervenzellen zum Erkennen von bewegten Objekten vor einem Hintergrund Methoden einsetzen, die man auch aus der digitalen Bildbearbeitung kennt. Die Ergebnisse werden in der aktuellen Ausgabe der Proceedings of the National Academy of Sciences veröffentlicht (PNAS 100 (19), September 16, 2003).

Die exakte Verarbeitung von Bildern bewegter Objekte ist für unsere Orientierung im Raum und die Reaktion auf Angriffe oder Gefahren lebensnotwendig. Autofahren wäre beispielsweise ohne diese Gehirnleistung nicht möglich, denn der Fahrer muss die vorbeiziehende Umwelt von plötzlich auftauchenden Verkehrsteilnehmern oder Hindernissen unterscheiden können. Wie diese unterschiedlichen Eindrücke in den Sehzentren des Gehirns verrechnet werden, erforschen Wissenschaftler der Abteilung Neuronale Informationsverarbeitung am Max-Planck-Institut für Neurobiologie in Martinsried. Sie untersuchen diese komplizierten Vorgänge an gewöhnlichen Fliegen, wahren Meistern des Bewegungssehens.


Zum Sehsystem im Gehirn der Schmeißfliege gehört als höher geordnetes Zentrum die Lobulaplatte. Dort befinden sich sechzig so genannte Tangentialzellen, die auf die Bewegungsreize aus verschiedenen Richtungen reagieren, indem sie die Signale von pixelartig angeordneten Bewegungsdetektorzellen aufsummieren. Hermann Cuntz beschäftigt sich im Rahmen seiner Doktorarbeit mit der Kommunikation zwischen zwei Nervenzelltypen, die auf horizontale Bewegungsreize reagieren, die HS- und die CH-Zellen (HS: engl. Horizontal System; CH: engl. Centrifugal Horizontal). Gemeinsam mit seinen Betreuern Jürgen Haag und Alexander Borst hat Cuntz die Nervenzellen im Computermodell nachgebaut (vgl. Abb.1), um die Reizleitung und -übertragung zu simulieren und mit Messungen an realen Nervenzellen vergleichen zu können.

Bei den Experimenten, deren Ergebnisse Haag und Borst bereits im vergangenen Jahr veröffentlicht hatten, wurden Farbstoffe eingesetzt, die - einmal in die Zelle injiziert - durch eine Helligkeitsänderung anzeigen, welche Teile der Nervenzelle aktiv sind. (s. Journal of Neuroscience , 2002, 22(8):3227-3233). Hierbei haben Haag und Borst gezeigt, dass HS- und CH-Zellen in ungewöhnlicher Weise über ihre feinen Verästelungen (Dendriten) elektrisch miteinander verbunden sind und zusammen ein dendritisches Netzwerk bilden. Diese Art der Verbindung legte die Vermutung nahe, dass die CH-Zellen ihre visuelle Information indirekt von der HS-Zelle über die Verästelung erhalten.

Diese Vermutung konnte Hermann Cuntz jetzt in der Computersimulation reproduzieren. Hierzu betrachtete er jede HS- und CH-Zelle im Computermodell und unterteilte die Zellen ihrer Verzweigungsstruktur folgend in zigtausend Mess-Abschnitte einzeln vergleichbar mit elektrischen Kabeln . Zusätzlich baute er an diesen simulierten Zellen Synapsen also Kontaktstellen zwischen den verschiedenen Nervenzellen ein, an denen die elektrischen Signale von Bewegungsdetektorzellen eintreffen. Dadurch war es möglich, an jedem Ästchen der Zellen die vorhandene Spannung zu "messen". Die simulierten Nervenzellen wurden über die Synapsen miteinander verbunden und das HS-Zellmodell elektrisch gereizt. In der Modell-Simulation zeigte sich, dass die Signalantwort in der CH-Zelle genau jenen Beobachtungen entsprach, die Haag und Borst zuvor im Experiment gemacht hatten. Die CH-Zelle musste also in direktem Kontakt mit der HS-Zelle stehen und nur von dieser eingehende Impulse empfangen.

Im zweiten Schritt simulierten die Wissenschaftler die lineare Weiterleitung des elektrischen Signals und stellten fest, dass die Signalantwort bei den CH-Zellen stets breiter und unschärfer war, als die gesendeten Signale. Simulierte man in den HS-Zellen einen lokalen Aktivitätspeak, war die dadurch induzierte Aktivitätsverteilung in dem Dendrit der CH-Zelle deutlich breiter: Die Weiterleitung führte also zu einem unschärferen Bild (vgl. Abb.2). Auch dies hatten Borst und Haag bereits in früheren Messungen an realen Zellen beobachtet. Dieses Unscharf-Machen nennt man in der modernen Bildbearbeitung "Blurr-Effekt" oder "Weichzeichnen". Dabei werden nebeneinander liegende Bildpunkte miteinander vermischt, so dass die Konturen verschwimmen. Auf ähnliche Weise verarbeiten offensichtlich die CH-Zellen jene Signale, die sie aus HS-Zellen über das Dendriten-Netzwerk empfangen. Damit haben die Martinsrieder Neurobiologen eine fundamentale Eigenschaft der dendritischen Verknüpfung entdeckt.

Im dritten Schritt untersuchten die Wissenschaftler, welche Funktion das Weichzeichnen des Signals durch die CH-Zelle haben könnte. Dazu betrachteten sie jene Nervenzellen, die von der CH-Zelle hemmende Signale empfangen. Diese so genannten FD-Zellen (engl. Figure Detection) sind am Erkennen bewegter Objekte vor einem bewegten Hintergrund beteiligt. Überträgt nun die CH-Zelle ein unscharfes und damit räumlich weiter verteiltes Spannungssignal auf die FD-Zelle, hat das Signal auch eine breitere hemmende Wirkung. Im Dendrit der FD-Zelle wird der hemmende Input mit dem positiven Input verrechnet, den die Zelle von den Signalen der Bewegungsdetektorzellen direkt erhält (s. Illustration in Abb. 3). Je breiter die Hemmung durch die CH-Zelle auf die FD-Zelle gestreut ist, um so schärfer wird das Bewegungs-Signal an die FD-Zelle aus den Bewegungsdetektorzellen herausgearbeitet, vergleichbar dem Schärfen von Konturen durch das "Maskieren von Unschärfe", eine Filtereigenschaft moderner Bildbearbeitungsprogramme, bei dem die Konturen von Bildern durch die Kontrasterhöhung einzelner Bildpunkte verstärkt werden. Cuntz, Haag und Borst vermuten deshalb den Sinn dieser Kontrasterhöhung darin, die Konturen einer Figur, die sich vor einem bewegten Hintergrund bewegt, zu schärfen.

Die Martinsrieder Neurobiologen haben mit dem dendritischen Netzwerk ganz neue Kommunikationswege zwischen Nervenzellen entdeckt. Die im Sehzentrum der Fliege räumlich geordnete Bildinformation wird durch das dendritische Netzwerk der drei verschiedenen Nervenzelltypen sehr einfach und effektiv verarbeitet. Der direkte Kontakt zwischen HS- und CH-Zellen über die elektrischen Synapsen ihrer Dendriten führt zu einem Weichzeichnungseffekt und dieser wiederum ist Voraussetzung für die Schärfung der Konturen bewegter Formen. Die Max-Planck-Wissenschaftler haben damit gezeigt, wie die Kommunikation von Nervenzellen dafür sorgen kann, dass eine Schmeißfliege im Flug zwischen der "Bewegung" der Umgebung, die im Flug an ihr vorbeizieht, und der Bewegung eines Objektes in dieser Umgebung unterscheiden kann. "Durch unsere Erkenntnis über die Funktion der CH-Zellen haben wir eine ganz neue Möglichkeiten entdeckt, wie Nervenzellen miteinander kommunizieren können", fasst Alexander Borst zusammen.

Originalveröffentlichung:

Cuntz, H., Haag, J., and Borst, A.
Neural image processing by dendritic networks
PNAS 100 (19), September 16, 2003, 11082-11085


Weitere Informationen erhalten Sie von:

Eva-Maria Diehl
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 2824
Fax.: 089 8578 - 2943
E-Mail: diehl@neuro.mpg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft

Weitere Berichte zu: Bewegungsdetektorzellen CH-Zelle CH-Zellen Dendrit FD-Zelle HS- Nervenzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht «Schwangere» Stubenfliegenmännchen zeigen Evolution der Geschlechtsbestimmung
23.05.2017 | Universität Zürich

nachricht Goldene Hilfe gegen Hautkrankheiten
23.05.2017 | Hochschule Ostwestfalen-Lippe

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

WHZ erhält hochmodernen Prüfkomplex für Schraubenverbindungen

23.05.2017 | Maschinenbau

«Schwangere» Stubenfliegenmännchen zeigen Evolution der Geschlechtsbestimmung

23.05.2017 | Biowissenschaften Chemie

Tumult im trägen Elektronen-Dasein

23.05.2017 | Physik Astronomie