Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unscharfe Signale schärfen Nervenzellen den Blick

19.09.2003


Abb. 1: Realistisches Modell der HS- (rot) und der CH-Zellen (grün). Links unten ein Ausschnitt mit Modellzellen mit elektrischen Synapsen (weiß).

Abb. 2: Spannungsverteilung in HS- und CH- Zellen im Sehzentrum der Schmeißfliege. Linkes Bild: Eine lokale Reizung der HS-Zelle führt zu einer räumlich eng begrenzten Aktivitätsverteilung. Rechtes Bild: In einer mit der HS im dendritischen Netzwerk verbundenen CH-Zelle breitet sich dagegen das Signal sehr viel weiter aus.

Fotos: Max-Planck-Institut für Neurobiologie


Abb. 3: Modellierung der Spannungsleitung zwischen HS-, CH- und FD-Zelle. Die Kontrasterhöhung des Signals aus den Bewegungsrezeptorzellen (EMD Array) an FD-Zelle wird durch die Unschärfe des hemmenden Inputs aus den CH-Zellen erzielt.

Foto: Max-Planck-Institut für Neurobiologie


Max-Planck-Wissenschaftlern gelingt Nachweis, dass die Objektwahrnehmung bei Fliegen auf einem dendritischen Netzwerk beruht


Wir erkennen Bilder, Formen oder bewegte Objekte vor einem sich bewegenden Hintergrund dank der fein abgestimmten Verrechnung von Impulsen in den Sehzentren des Gehirns. Wissenschaftlern der Abteilung Neuronale Informationsverarbeitung des Max-Planck-Instituts für Neurobiologie in Martinsried ist es jetzt im Computermodell erstmals gelungen, Details jener Nervenkontakte aufzuklären, die zwischen drei verschiedenen Typen von Nervenzellen im Sehzentrum der Schmeißfliege bestehen. Die Neurobiologen konnten zeigen, dass Nervenzellen zum Erkennen von bewegten Objekten vor einem Hintergrund Methoden einsetzen, die man auch aus der digitalen Bildbearbeitung kennt. Die Ergebnisse werden in der aktuellen Ausgabe der Proceedings of the National Academy of Sciences veröffentlicht (PNAS 100 (19), September 16, 2003).

Die exakte Verarbeitung von Bildern bewegter Objekte ist für unsere Orientierung im Raum und die Reaktion auf Angriffe oder Gefahren lebensnotwendig. Autofahren wäre beispielsweise ohne diese Gehirnleistung nicht möglich, denn der Fahrer muss die vorbeiziehende Umwelt von plötzlich auftauchenden Verkehrsteilnehmern oder Hindernissen unterscheiden können. Wie diese unterschiedlichen Eindrücke in den Sehzentren des Gehirns verrechnet werden, erforschen Wissenschaftler der Abteilung Neuronale Informationsverarbeitung am Max-Planck-Institut für Neurobiologie in Martinsried. Sie untersuchen diese komplizierten Vorgänge an gewöhnlichen Fliegen, wahren Meistern des Bewegungssehens.


Zum Sehsystem im Gehirn der Schmeißfliege gehört als höher geordnetes Zentrum die Lobulaplatte. Dort befinden sich sechzig so genannte Tangentialzellen, die auf die Bewegungsreize aus verschiedenen Richtungen reagieren, indem sie die Signale von pixelartig angeordneten Bewegungsdetektorzellen aufsummieren. Hermann Cuntz beschäftigt sich im Rahmen seiner Doktorarbeit mit der Kommunikation zwischen zwei Nervenzelltypen, die auf horizontale Bewegungsreize reagieren, die HS- und die CH-Zellen (HS: engl. Horizontal System; CH: engl. Centrifugal Horizontal). Gemeinsam mit seinen Betreuern Jürgen Haag und Alexander Borst hat Cuntz die Nervenzellen im Computermodell nachgebaut (vgl. Abb.1), um die Reizleitung und -übertragung zu simulieren und mit Messungen an realen Nervenzellen vergleichen zu können.

Bei den Experimenten, deren Ergebnisse Haag und Borst bereits im vergangenen Jahr veröffentlicht hatten, wurden Farbstoffe eingesetzt, die - einmal in die Zelle injiziert - durch eine Helligkeitsänderung anzeigen, welche Teile der Nervenzelle aktiv sind. (s. Journal of Neuroscience , 2002, 22(8):3227-3233). Hierbei haben Haag und Borst gezeigt, dass HS- und CH-Zellen in ungewöhnlicher Weise über ihre feinen Verästelungen (Dendriten) elektrisch miteinander verbunden sind und zusammen ein dendritisches Netzwerk bilden. Diese Art der Verbindung legte die Vermutung nahe, dass die CH-Zellen ihre visuelle Information indirekt von der HS-Zelle über die Verästelung erhalten.

Diese Vermutung konnte Hermann Cuntz jetzt in der Computersimulation reproduzieren. Hierzu betrachtete er jede HS- und CH-Zelle im Computermodell und unterteilte die Zellen ihrer Verzweigungsstruktur folgend in zigtausend Mess-Abschnitte einzeln vergleichbar mit elektrischen Kabeln . Zusätzlich baute er an diesen simulierten Zellen Synapsen also Kontaktstellen zwischen den verschiedenen Nervenzellen ein, an denen die elektrischen Signale von Bewegungsdetektorzellen eintreffen. Dadurch war es möglich, an jedem Ästchen der Zellen die vorhandene Spannung zu "messen". Die simulierten Nervenzellen wurden über die Synapsen miteinander verbunden und das HS-Zellmodell elektrisch gereizt. In der Modell-Simulation zeigte sich, dass die Signalantwort in der CH-Zelle genau jenen Beobachtungen entsprach, die Haag und Borst zuvor im Experiment gemacht hatten. Die CH-Zelle musste also in direktem Kontakt mit der HS-Zelle stehen und nur von dieser eingehende Impulse empfangen.

Im zweiten Schritt simulierten die Wissenschaftler die lineare Weiterleitung des elektrischen Signals und stellten fest, dass die Signalantwort bei den CH-Zellen stets breiter und unschärfer war, als die gesendeten Signale. Simulierte man in den HS-Zellen einen lokalen Aktivitätspeak, war die dadurch induzierte Aktivitätsverteilung in dem Dendrit der CH-Zelle deutlich breiter: Die Weiterleitung führte also zu einem unschärferen Bild (vgl. Abb.2). Auch dies hatten Borst und Haag bereits in früheren Messungen an realen Zellen beobachtet. Dieses Unscharf-Machen nennt man in der modernen Bildbearbeitung "Blurr-Effekt" oder "Weichzeichnen". Dabei werden nebeneinander liegende Bildpunkte miteinander vermischt, so dass die Konturen verschwimmen. Auf ähnliche Weise verarbeiten offensichtlich die CH-Zellen jene Signale, die sie aus HS-Zellen über das Dendriten-Netzwerk empfangen. Damit haben die Martinsrieder Neurobiologen eine fundamentale Eigenschaft der dendritischen Verknüpfung entdeckt.

Im dritten Schritt untersuchten die Wissenschaftler, welche Funktion das Weichzeichnen des Signals durch die CH-Zelle haben könnte. Dazu betrachteten sie jene Nervenzellen, die von der CH-Zelle hemmende Signale empfangen. Diese so genannten FD-Zellen (engl. Figure Detection) sind am Erkennen bewegter Objekte vor einem bewegten Hintergrund beteiligt. Überträgt nun die CH-Zelle ein unscharfes und damit räumlich weiter verteiltes Spannungssignal auf die FD-Zelle, hat das Signal auch eine breitere hemmende Wirkung. Im Dendrit der FD-Zelle wird der hemmende Input mit dem positiven Input verrechnet, den die Zelle von den Signalen der Bewegungsdetektorzellen direkt erhält (s. Illustration in Abb. 3). Je breiter die Hemmung durch die CH-Zelle auf die FD-Zelle gestreut ist, um so schärfer wird das Bewegungs-Signal an die FD-Zelle aus den Bewegungsdetektorzellen herausgearbeitet, vergleichbar dem Schärfen von Konturen durch das "Maskieren von Unschärfe", eine Filtereigenschaft moderner Bildbearbeitungsprogramme, bei dem die Konturen von Bildern durch die Kontrasterhöhung einzelner Bildpunkte verstärkt werden. Cuntz, Haag und Borst vermuten deshalb den Sinn dieser Kontrasterhöhung darin, die Konturen einer Figur, die sich vor einem bewegten Hintergrund bewegt, zu schärfen.

Die Martinsrieder Neurobiologen haben mit dem dendritischen Netzwerk ganz neue Kommunikationswege zwischen Nervenzellen entdeckt. Die im Sehzentrum der Fliege räumlich geordnete Bildinformation wird durch das dendritische Netzwerk der drei verschiedenen Nervenzelltypen sehr einfach und effektiv verarbeitet. Der direkte Kontakt zwischen HS- und CH-Zellen über die elektrischen Synapsen ihrer Dendriten führt zu einem Weichzeichnungseffekt und dieser wiederum ist Voraussetzung für die Schärfung der Konturen bewegter Formen. Die Max-Planck-Wissenschaftler haben damit gezeigt, wie die Kommunikation von Nervenzellen dafür sorgen kann, dass eine Schmeißfliege im Flug zwischen der "Bewegung" der Umgebung, die im Flug an ihr vorbeizieht, und der Bewegung eines Objektes in dieser Umgebung unterscheiden kann. "Durch unsere Erkenntnis über die Funktion der CH-Zellen haben wir eine ganz neue Möglichkeiten entdeckt, wie Nervenzellen miteinander kommunizieren können", fasst Alexander Borst zusammen.

Originalveröffentlichung:

Cuntz, H., Haag, J., and Borst, A.
Neural image processing by dendritic networks
PNAS 100 (19), September 16, 2003, 11082-11085


Weitere Informationen erhalten Sie von:

Eva-Maria Diehl
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 2824
Fax.: 089 8578 - 2943
E-Mail: diehl@neuro.mpg.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft

Weitere Berichte zu: Bewegungsdetektorzellen CH-Zelle CH-Zellen Dendrit FD-Zelle HS- Nervenzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie