Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Evolution von Kooperation in einer Petri-Schale

04.09.2003


Evolution sozialen Schwärmens bei Bakterien. Wildtypen des Bodenbakteriums Myxococcus xanthus (oben, Mitte) schwärmen gemeinsam auf weichem Nährboden (Agar), während ihre nicht-sozialen Mutanten, denen bestimmte extrazelluläre Fortsätze (Pili) fehlen (in 5 Uhr- und 10 Uhr-Position), diese Fähigkeit verloren haben. Zwei Stämme, die von den Pili-losen Mutanten abstammen, haben die Fähigkeit zum sozialen Schwärmen wieder neu evolviert (in 3 Uhr- und 8 Uhr-Position), allerdings mit fundamental anderen Mechanismen und Mustern als der Wildtyp.
Foto: Max-Planck-Institut für Entwicklungsbiologie


Max-Planck-Wissenschaftlern gelingt es mit molekularbiologischen Methoden, erstmals die Evolution sozialen Verhaltens bei Bakterien zu beobachten


Viele positive Aspekte der modernen menschlichen Gesellschaft sind der Ertrag Jahrtausende langer kooperativer Interaktionen zwischen den Mitgliedern unserer Art. Dennoch ist der Ursprung von kooperativen Verhaltensweisen bei sozialen Lebewesen während der Evolution weiterhin eines der faszinierendsten Rätsel der Biologie. Kooperation ist wichtig, da sie den Teilnehmern Vorteile verschafft, die isolierten Individuen nicht zugänglich sind. Am Beispiel des Bodenbakteriums Myxococcus xanthus ist es jetzt Gregory J. Velicer und Yuen-tsu N. Yu vom Max-Planck-Institut für Entwicklungsbiologie in Tübingen erstmals gelungen, die Evolution einer neuen Form der Kooperation zwischen bakteriellen Zellen "in Echtzeit" im Labor zu beobachten. Wie in einer Studie berichtet wird, die am 4. September 2003 in der Fachzeitschrift Nature erscheint, haben die Bakterien neuartige Formen kooperativen Verhaltens entwickelt, um gemeinsam über Oberflächen schwärmen und nach Beute suchen zu können. Diese Beobachtungen sind von grundlegender Bedeutung für die Evolutionsbiologie, aber auch für die Bekämpfung sozial agierender Erreger von Infektionskrankheiten.

Neben sozialen Tieren sind auch viele Arten von Bakterien bekannt, die sich in verschiedenen Situationen kooperativ verhalten, wie zum Beispiel bei der gemeinsamen Herstellung von Substanzen, die die Dichte der Population messen, und von haftenden Polymeren, die es den Mikroorganismen ermöglichen, sich auf Oberflächen zu Biofilmen zusammen zu lagern. Dabei sind Myxobakterien, zu denen auch M. xanthus gehört, eine besonders soziale Bakterienart. Diese Zellen arbeiten in großen Gruppen zusammen, um über Oberflächen zu schwärmen und wie ein Rudel Wölfe "Opferorganismen" zu jagen und zu töten. Mehr noch, finden diese Bakterien sehr karge Bedingungen vor, vereinigen sie sich zu Gruppen von bis zu 100.000 M. xanthus Zellen, die dann dreidimensionale Samenstrukturen bilden, in denen sich widerstandsfähige Sporen bilden, die Nahrungsmangel, Austrocknung und Hitze widerstehen können.


Wildtypen von M. xanthus bewegen sich normalerweise gemeinsam mit Hilfe eines Mechanismus, den man die "S-Beweglichkeit" nennt. Diese Form der Bewegung beruht auf faserigen Fortsätzen (Pili) an der Zelloberfläche, über die die Zellen miteinander im Kontakt sind. Daneben können sich die Zellen auch durch einen anderen Bewegungsmechanismus, die "A-Beweglichkeit", bei der sie Schleim absondern, individuell fortbewegen. Doch man kann sie recht einfach dazu bringen, sich sozial zu bewegen, indem man sie auf einem weichen Nährboden (Agar) kultiviert, auf dem nur noch die S-Beweglichkeit eine effektive Fortbewegung ermöglicht.

Velicer und Yu fragten sich nun, ob M. xanthus auf weichem Agar auch dann sozial schwärmen könnten, wenn ihnen die Pili-Fortsätze, die für das normale soziale Schwärmen der S-Beweglichkeit absolut notwendig sind, fehlen. Dazu entfernten die Forscher ein Gen aus dem Genom von M. xanthus, das den strukturellen Hauptbestandteil der Pili kodiert. Die auf diese Weise entstandene nicht-soziale Mutante war unfähig, sich auf weichem Nährboden fortzubewegen. Diese Mutante wurde vermehrt, um weitere Stämme zu erhalten. Diese wuchsen und evolvierten auf dem weichen Agar über einen Zeitraum von 64 Wochen. Dazu wurden Zellen in die Mitte einer weichen Agarplatte geimpft und alle zwei Wochen ein kleiner Abschnitt vom äußeren Rand des wachsenden Stammes auf eine frische Platte übertragen. Nach vielen Wochen Kultivierung begannen zwei der neuen Stämme mit beinahe derselben Geschwindigkeit wie normale Wildtyp-Stämme nach außen zu schwärmen.

Doch die Schwärmmuster der neuen Stämme unterschieden sich deutlich von denen mit normaler S-Beweglichkeit, was vermuten ließ, dass sie sich mit einem neuen Mechanismus fortbewegten. Velicer und Yu konnten nachweisen, dass diese Stämme nicht etwa die Fähigkeit wiedergewonnen hatten, Pili zu bilden und sich folglich über die S-Beweglichkeit fortzubewegen. Vielmehr stellte sich heraus, dass die Antriebskraft für das Schwärmen von der A-Beweglichkeit, dem normalen Motor der individuellen Bewegung, kommt, die offenbar durch eine zusätzliche soziale Komponente verstärkt wurde: Diese Bakterien-Stämme hatten die Fähigkeit evolviert, größere Mengen einer haftenden polymeren Substanz zu bilden, die ihre Zellen viel stärker zusammenhaften ließ als bei ihren nicht-sozialen Vorfahren. Diese interzelluläre Substanz besteht aus Strängen von so genannten Fibrillen aus Kohlenhydraten und Proteinen und ist eine der Hauptgründe für die Fähigkeit des neu entstandenen Stammes zu schwärmen. Hemmten die Forscher genetisch oder chemisch die Bildung dieser Fibrillen, wurde das Schwärmen dieser Bakterien erheblich gestört.

Dann erzeugten die Wissenschaftler durch Mutation Variationen dieser Stämme, die auch keine Fibrillen mehr bilden konnten und somit schwarmunfähig waren. Hierbei stellten sie fest, dass die schwarm-defekten Mutanten durch die bloße Anwesenheit ihrer Fibrillen-produzierenden Verwandten "gerettet" werden können: Werden Fibrillen-unfähige Mutanten allein auf einer Platte kultiviert, schwärmen sie sehr schlecht. Werden sie jedoch als Minderheit mit ihren klebenden, Fibrillen-produzierenden Verwandten vermischt, schwärmen sie viel weiter, dank der Anwesenheit des Fibrillengrundstoff, der von ihren intakten Verwandten gebildet wurde.

Die in diesen Tests entstandene Schwarmfähigkeit ist kooperativ, denn sie hängt davon ab, wie viel Fibrillenmaterial von individuellen Zellen in den gemeinsamen Bereich zwischen den Zellen abgegeben wird. Genauso wie Organisationen in der menschlichen Gesellschaft nicht mehr funktionieren können, wenn zu wenige Leute ihren Teil dazu beitragen, können Gruppen von M. xanthus nicht mehr schwärmen, wenn zu viele Zellen in der Gruppe sind, die keine klebende Fibrillen beisteuern.

Diese Studie von Velicer und Yu zeigt, dass soziale Mikroorganismen gut dazu geeignet sind, die Evolution des sozialen Zusammenwirkens zwischen Individuen experimentell zu untersuchen, ein Bereich, der Theoretiker seit Jahrzehnten herausgefordert hat. Für viele Mikroben einschließlich gefährlicher Krankheitserreger ist die soziale Interaktion mit anderen Mitgliedern der gleichen Spezies wichtig für ihren evolutionären Erfolg, ihr Überleben. Weiterführende Forschungsarbeiten, wie sich die Zusammenarbeit innerhalb solcher Miniaturgesellschaften entwickelt, sollte sowohl Licht auf bisher ungelöste Fragen werfen als auch zur Bekämpfung von sozial agierenden Krankheitserregern beitragen.

Weitere Informationen erhalten Sie von:

Dr. Gregory Velicer
Max-Planck-Institut für Entwicklungsbiologie, Tübingen
Tel.: 07071 601 - 405 oder - 843
Fax.: 07071 601 - 498
E-Mail: gregory.velicer@tuebingen.mpg.de

Dr. Gregory Velicer | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.tuebingen.mpg.de

Weitere Berichte zu: Bakterium Evolution Fibrille S-Beweglichkeit Stämme

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Chaos bei der Zellteilung – wie Chromosomenfehler in Krebszellen entstehen
23.08.2017 | Deutsches Krebsforschungszentrum

nachricht Winzige Spurenverunreinigungen, enorme Auswirkungen
23.08.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Chaos bei der Zellteilung – wie Chromosomenfehler in Krebszellen entstehen

23.08.2017 | Biowissenschaften Chemie

Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

23.08.2017 | Förderungen Preise

Winzige Spurenverunreinigungen, enorme Auswirkungen

23.08.2017 | Biowissenschaften Chemie