Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Verfahren zur Gewinnung von Wasserstoff mit niedrigem Gehalt an Kohlenmonoxid

04.09.2003


Brennstoffzellen sind im Kommen. Aber erst wenn das aufwendige "Nachtanken" von Wasserstoff entfällt, wird sich dieses Konzept, etwa für Fahrzeuge, auf breiter Basis durchsetzen. Entsprechend wird an transportablen Wasserstofferzeugern gearbeitet. Problem dabei: Wasserstoff, der nach den üblichen Verfahren hergestellt wird, enthält größere Mengen an Kohlenmonoxid (CO), das die Funktion der Brennstoffzelle beeinträchtig und nur durch mehrere aufwendige Verfahrensschritte entfernt werden kann. James A. Dumesic und Rupali R. Davda von der University of Wisconsin haben nun ein Verfahren entwickelt, nach dem Wasserstoff mit geringem CO-Anteil hergestellt werden kann.



Die Forscher setzen dabei nicht auf ein Steam-Reforming von Erdölprodukten, sondern verwenden Kohlenhydrate, beispielsweise Ethylenglycol, die aus Biomasse gewonnen werden. In einem katalytischen Reforming-Prozess werden diese Ausgangsstoffe bei ca. 225 °C unter Druck in flüssigem Wasser zu CO und Wasserstoff gespalten. In einer Folgereaktion, dem so genannten Wassergas-Shift,wird dann CO mit Wasserdampf zu CO2 und wiederum Wasserstoff umgesetzt. Da beide Reaktionen im gleichen vergleichsweise niedrigen Temperaturbereich laufen, können sie gemeinsam in einem Reaktor stattfinden - ein besonderer Vorteil für transportable Wasserstoff-Erzeuger.



Beim Reforming entstehen CO und Wasserstoff, also gasförmige Produkte, die in der flüssigen Phase Gasblasen bilden. Innerhalb dieser Blasen findet anschließend der Wassergas-Shift statt. Diese Reaktion ist eine Gleichgewichtsreaktion, das heißt, die Edukte werden nicht vollständig zu Produkten umgesetzt, sondern es stellt sich ein bestimmtes Mengenverhältnis ein. Um die CO-Menge zu minimieren, müssen die Bedingungen in den Blasen so eingestellt werden, dass das Gleichgewicht möglichst weit auf die Seite der Produkte verschoben wird. Das geht, indem die Menge an Wasserdampf in den Blasen maximiert wird. Unter diesen Bedingungen können sich allerdings die Ausgangsstoffe für den Reforming-Prozess zersetzen. Um auch noch dieses Problem zu lösen, griffen Davda und Dumesic zu einem Kniff. Sie teilten den Reaktor in zwei Zonen. In der unteren findet das Reforming statt, es entstehen Gasblasen mit relativ wenig Wasserdampf, die aufsteigen und dann die obere Zone erreichen. In dieser "Shift-Zone" wird die Temperatur um etwa 10 °C herauf gesetzt. Dadurch verdampft eine große Menge Wasser, so dass der Wassergas-Shift unter optimalen Bedingungen stattfindet und die CO-Menge auf Brennstoffzellen-taugliche Levels gesenkt werden kann.

Kontakt:

Prof. J. A. Dumesic
Chemical Engineering Department
University of Wisconsin
Madison, WI 53706, USA
Fax: (+1) 608-262-5434
E-mail: dumesic@engr.wisc.edu

Angewandte Chemie
Postfach 101161
D-69451 Weinheim
Tel.: 06201-606 321
Fax: 06201-606 331
E-Mail: angewandte@wiley-vch.de

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.angewandte.org

Weitere Berichte zu: Blasen Kohlenmonoxid Wasserdampf Wassergas-Shift Wasserstoff

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics