Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Verfahren zur Gewinnung von Wasserstoff mit niedrigem Gehalt an Kohlenmonoxid

04.09.2003


Brennstoffzellen sind im Kommen. Aber erst wenn das aufwendige "Nachtanken" von Wasserstoff entfällt, wird sich dieses Konzept, etwa für Fahrzeuge, auf breiter Basis durchsetzen. Entsprechend wird an transportablen Wasserstofferzeugern gearbeitet. Problem dabei: Wasserstoff, der nach den üblichen Verfahren hergestellt wird, enthält größere Mengen an Kohlenmonoxid (CO), das die Funktion der Brennstoffzelle beeinträchtig und nur durch mehrere aufwendige Verfahrensschritte entfernt werden kann. James A. Dumesic und Rupali R. Davda von der University of Wisconsin haben nun ein Verfahren entwickelt, nach dem Wasserstoff mit geringem CO-Anteil hergestellt werden kann.



Die Forscher setzen dabei nicht auf ein Steam-Reforming von Erdölprodukten, sondern verwenden Kohlenhydrate, beispielsweise Ethylenglycol, die aus Biomasse gewonnen werden. In einem katalytischen Reforming-Prozess werden diese Ausgangsstoffe bei ca. 225 °C unter Druck in flüssigem Wasser zu CO und Wasserstoff gespalten. In einer Folgereaktion, dem so genannten Wassergas-Shift,wird dann CO mit Wasserdampf zu CO2 und wiederum Wasserstoff umgesetzt. Da beide Reaktionen im gleichen vergleichsweise niedrigen Temperaturbereich laufen, können sie gemeinsam in einem Reaktor stattfinden - ein besonderer Vorteil für transportable Wasserstoff-Erzeuger.



Beim Reforming entstehen CO und Wasserstoff, also gasförmige Produkte, die in der flüssigen Phase Gasblasen bilden. Innerhalb dieser Blasen findet anschließend der Wassergas-Shift statt. Diese Reaktion ist eine Gleichgewichtsreaktion, das heißt, die Edukte werden nicht vollständig zu Produkten umgesetzt, sondern es stellt sich ein bestimmtes Mengenverhältnis ein. Um die CO-Menge zu minimieren, müssen die Bedingungen in den Blasen so eingestellt werden, dass das Gleichgewicht möglichst weit auf die Seite der Produkte verschoben wird. Das geht, indem die Menge an Wasserdampf in den Blasen maximiert wird. Unter diesen Bedingungen können sich allerdings die Ausgangsstoffe für den Reforming-Prozess zersetzen. Um auch noch dieses Problem zu lösen, griffen Davda und Dumesic zu einem Kniff. Sie teilten den Reaktor in zwei Zonen. In der unteren findet das Reforming statt, es entstehen Gasblasen mit relativ wenig Wasserdampf, die aufsteigen und dann die obere Zone erreichen. In dieser "Shift-Zone" wird die Temperatur um etwa 10 °C herauf gesetzt. Dadurch verdampft eine große Menge Wasser, so dass der Wassergas-Shift unter optimalen Bedingungen stattfindet und die CO-Menge auf Brennstoffzellen-taugliche Levels gesenkt werden kann.

Kontakt:

Prof. J. A. Dumesic
Chemical Engineering Department
University of Wisconsin
Madison, WI 53706, USA
Fax: (+1) 608-262-5434
E-mail: dumesic@engr.wisc.edu

Angewandte Chemie
Postfach 101161
D-69451 Weinheim
Tel.: 06201-606 321
Fax: 06201-606 331
E-Mail: angewandte@wiley-vch.de

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.angewandte.org

Weitere Berichte zu: Blasen Kohlenmonoxid Wasserdampf Wassergas-Shift Wasserstoff

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie