Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Antikrebs-Moleküle als Trojanische Pferde

28.08.2003


Mit Präzisionsschlägen gezielt Krebszellen bekämpfen, ohne gesundes Gewebe in Mitleidenschaft zu ziehen - diesem Ziel sind Wissenschaftler des Deutschen Krebsforschungszentrums (DKFZ) und der Heidelberger Universitätsklinik einen Schritt näher gekommen. Ihre Strategie erinnert an den Trick mit dem Trojanischen Pferd: Maßgeschneiderte Moleküle werden huckepack mit krebshemmenden Substanzen beladen und gezielt in Tumorzellen eingeschleust.



Nach wie vor sind die Nebenwirkungen bei einer Chemotherapie eines der größten Hindernisse in der Krebsbehandlung. Die eingesetzten Wirkstoffe unterscheiden nämlich nicht zwischen Freund und Feind: Sie bekämpfen alle sich teilenden Zellen, aggressive Metastasen genauso wie gesunde Zellen, etwa in der Kopfhaut. Haarausfall ist dabei noch eine der eher harmlosen Nebenwirkungen. Ein vordringliches Ziel der Krebsmediziner ist es daher, entartete Zellen gezielt zu bekämpfen, möglichst bevor sie zu einem Tumor herangewuchert sind. So nehmen die Wissenschaftler zum Beispiel übermäßig aktive Gene ins Visier, die Krebszellen gegen Chemotherapeutika resistent machen, und unterdrücken sie mit so genannten Antisense-Oligonukleotiden. Allerdings sind diese Gen-Blocker an molekularen Maßstäben gemessen recht groß und haben es schwer, in die Zellen einzudringen. Zudem greifen auch sie entartete und normale Zellen gleichermaßen an - Nachteile, die einer klinischen Anwendung der Antisense-Oligonukleotide bisher im Weg stehen.



Dem Team um Professor Michael Eisenhut, Abteilung Radiochemie im DKFZ, Privatdozent Walter Mier, Radiologische Klinik der Uni Heidelberg und Professor Uwe Haberkorn, Klinische Kooperationseinheit Nuklearmedizin, DKFZ, gelang es nun, Antisense-Oligonukleotide gezielt in Tumorzellen einzuschleusen. Dazu koppelten die Wissenschaftler ihre krebshemmenden Antisense-Oligonukleotide an eine künstliche Substanz, die wie ein molekularer Schlüssel in das Schloss des Somatostatin-Rezeptors passt, der sich vermehrt auf der Hülle von Tumorzellen befindet. Auf diese Weise als molekulare Trojanische Pferde getarnt, ließen sich die Antisense-Oligonukleotide von den Somatostatin-Rezeptoren ins Innere der Tumorzellen verfrachten.

Bisher war es mit dieser Methode nur möglich gewesen, kleine Moleküle in Zellen zu bugsieren, etwa Zytostatika, welche die Zellteilung unterdrücken, oder Radioisotope zur inneren Bestrahlung. "Unsere Methode zeigt, dass es möglich ist, auch größere Moleküle gezielt im Tumorgewebe anzureichern", sagt Eisenhut. "Als nächstes untersuchen wir in Tierversuchen, ob die molekularen Trojaner die Therapie mit Zytostatika verbessern könnten."

Walter Mier, Ramon Eritja, Ashour Mohammed, Uwe Haberkorn, and Michael Eisenhut: Peptide-PNA Conjugates. Targeted Transport of Antisense Therapeutics into Tumors; Angewandte Chemie Int. Ed. 2003, 42, 1968-1971.


Dr. Julia Rautenstrauch | idw
Weitere Informationen:
http://www.dkfz.de

Weitere Berichte zu: Antisense-Oligonukleotide DKFZ Molekül Pferd Tumorzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie