Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ketten und Pyramiden aus Zellen

03.10.2000


Mit "optischen Pinzetten" lassen sich einzelne Zellen zu dreidimensionalen Strukturen zusammenbauen

Genau definierte Mikro-Aggregate aus lebenden Zellen sind für verschiedene Bereiche interessant, beispielsweise für analytische Systeme, in denen die Zellen als Sensoren genutzt werden. In der biochemischen Grundlagenforschung können sie der Untersuchung von Vorgängen wie Signalübertragung, Adhäsion und Wachstum von Zellen dienen. Besonders dreidimensionale Mikrostrukturen lassen sich jedoch nur schwer gezielt erzeugen.

Harvard-Forschern um George M. Whitesides ist es nun gelungen, genau definierte zwei- und dreidimensionale Mikrostrukturen aus einzelnen Zellen und Polystyrol-Mikrokügelchen aufzubauen. Die dazu herangezogene Methode nennt sich "Mikrofabrikation mit Licht". Dabei werden die Zellen und Kügelchen mit so genannten "optischen Pinzetten" festgehalten und präzise aneinander gefügt.

Licht als Pinzette, das hört sich zunächst seltsam an. In der Tat haben wir im Alltag noch nicht erlebt, dass Licht eine Kraft auf uns oder einen Gegenstand ausüben kann. Bei derart winzigen Objekten wie biologischen Zellen reichen aber die winzigen Kräfte der Lichtquanten aus, um sie wie mit einer richtigen Pinzette festzuhalten und sogar zu bewegen. Benötigt wird ein stark fokussierter Laserstrahl. Trifft er auf eine einzelne, optisch transparente Zelle, wird der Strahl daran wie an einer Linse gebrochen. Die Richtung der Lichtquanten ändert sich. Dabei wird eine Kraft auf die Zelle ausgeübt, die dafür sorgt, dass sie im Zentrum des Laserstrahls festgehalten wird. Wird der Strahl bewegt, bewegt sich die Zelle mit, sie ist gefangen. Die "Pinzetten" sind dabei so sanft, dass die Zellen keinen Schaden nehmen.

Sogar verschiedene Zelltypen, nämlich scheibenförmige Erythrozyten und kugelförmige Lymphozyten, ließen sich auf diese Weise miteinander zu unterschiedlichen Strukturen zusammenfügen. Sie wurden über Polystyrol-Mikrokügelchen verbunden, an denen die Zellen über unspezifische
Wechselwirkungen haften. Alternativ kann die Haftung über biospezifische Wechselwirkungen erfolgen. Dazu müssen die Kügelchen mit einer biologisch aktiven Substanz beschichtet werden.

"So ein Arrangement aus verschiedenartigen Zellen ist dafür geeignet, Wechselwirkungen zwischen den einzelnen Zellen, aber auch Unterschiede in der Wirkung von Pharmaka oder Toxinen auf verschiedene Zelltypen gleichzeitig zu untersuchen" erläutert Whitesides. "Die Mikrofabrikation mit Licht ist aber nicht auf Zellen beschränkt, sondern wird sich zu einem generellen Werkzeug zum Aufbau von Mikro-Objekten aus Partikeln aller Art entwickeln lassen."

Kontakt:

Prof. Dr. G. M. Whitesides
Department of Chemistry
and Chemical Biology
Harvard University
12 Oxford Street
Cambridge, MA 02138
USA

Fax: (+1) 617-495-9857

E-Mail: gwhitesides@gmwgroup.harvard.edu

Dr. Kurt Begitt | idw

Weitere Berichte zu: Lichtquanten Mikrostruktur Pinzette Strahl

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie