Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ketten und Pyramiden aus Zellen

03.10.2000


Mit "optischen Pinzetten" lassen sich einzelne Zellen zu dreidimensionalen Strukturen zusammenbauen

Genau definierte Mikro-Aggregate aus lebenden Zellen sind für verschiedene Bereiche interessant, beispielsweise für analytische Systeme, in denen die Zellen als Sensoren genutzt werden. In der biochemischen Grundlagenforschung können sie der Untersuchung von Vorgängen wie Signalübertragung, Adhäsion und Wachstum von Zellen dienen. Besonders dreidimensionale Mikrostrukturen lassen sich jedoch nur schwer gezielt erzeugen.

Harvard-Forschern um George M. Whitesides ist es nun gelungen, genau definierte zwei- und dreidimensionale Mikrostrukturen aus einzelnen Zellen und Polystyrol-Mikrokügelchen aufzubauen. Die dazu herangezogene Methode nennt sich "Mikrofabrikation mit Licht". Dabei werden die Zellen und Kügelchen mit so genannten "optischen Pinzetten" festgehalten und präzise aneinander gefügt.

Licht als Pinzette, das hört sich zunächst seltsam an. In der Tat haben wir im Alltag noch nicht erlebt, dass Licht eine Kraft auf uns oder einen Gegenstand ausüben kann. Bei derart winzigen Objekten wie biologischen Zellen reichen aber die winzigen Kräfte der Lichtquanten aus, um sie wie mit einer richtigen Pinzette festzuhalten und sogar zu bewegen. Benötigt wird ein stark fokussierter Laserstrahl. Trifft er auf eine einzelne, optisch transparente Zelle, wird der Strahl daran wie an einer Linse gebrochen. Die Richtung der Lichtquanten ändert sich. Dabei wird eine Kraft auf die Zelle ausgeübt, die dafür sorgt, dass sie im Zentrum des Laserstrahls festgehalten wird. Wird der Strahl bewegt, bewegt sich die Zelle mit, sie ist gefangen. Die "Pinzetten" sind dabei so sanft, dass die Zellen keinen Schaden nehmen.

Sogar verschiedene Zelltypen, nämlich scheibenförmige Erythrozyten und kugelförmige Lymphozyten, ließen sich auf diese Weise miteinander zu unterschiedlichen Strukturen zusammenfügen. Sie wurden über Polystyrol-Mikrokügelchen verbunden, an denen die Zellen über unspezifische
Wechselwirkungen haften. Alternativ kann die Haftung über biospezifische Wechselwirkungen erfolgen. Dazu müssen die Kügelchen mit einer biologisch aktiven Substanz beschichtet werden.

"So ein Arrangement aus verschiedenartigen Zellen ist dafür geeignet, Wechselwirkungen zwischen den einzelnen Zellen, aber auch Unterschiede in der Wirkung von Pharmaka oder Toxinen auf verschiedene Zelltypen gleichzeitig zu untersuchen" erläutert Whitesides. "Die Mikrofabrikation mit Licht ist aber nicht auf Zellen beschränkt, sondern wird sich zu einem generellen Werkzeug zum Aufbau von Mikro-Objekten aus Partikeln aller Art entwickeln lassen."

Kontakt:

Prof. Dr. G. M. Whitesides
Department of Chemistry
and Chemical Biology
Harvard University
12 Oxford Street
Cambridge, MA 02138
USA

Fax: (+1) 617-495-9857

E-Mail: gwhitesides@gmwgroup.harvard.edu

Dr. Kurt Begitt | idw

Weitere Berichte zu: Lichtquanten Mikrostruktur Pinzette Strahl

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise