Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschungsprogramm COST-Aktion

22.08.2003


EU-Programm "Chemistry in High Energy Microenvironments" zu umweltschonenden Verfahren, der so genannten "Grünen Chemie", als COST-Aktion (European COoperation in the Field of Scientific and Technical Research). Die beteiligten deutschen Arbeitsgruppen haben Prof. Jürgen Janek vom Physikalisch-Chemischen Institut der Justus-Liebig-Universität Gießen mit der Vertretung der nationalen Interessen im gemeinsamen europäischen Management-Komitee beauftragt. In der Gießener Arbeitsgruppe von Prof. Janek werden u. a. neue plasma-chemische Verfahren entwickelt, die langfristig im Bereich der Abgasreinigung oder Schadstoffvernichtung zum Einsatz kommen könnten.


Auch wenn dies angesichts vieler Diskussionen um Umweltfragen und ökologische Verfahren gerne verschwiegen wird: Die Chemie liefert uns nahezu alle modernen Stoffe, mit denen wir uns heute umgeben. Dies beginnt bei der Kleidung und der Kosmetik, funktionalen oder dekorativen Kunststoffen in fast allen technischen Geräten, schmutzabweisenden Oberflächen und vielem mehr und endet bei der chemischen Produktion medizinischer Wirkstoffe noch lange nicht. Ein Thema, das hierbei seit langem an Bedeutung gewinnt, ist die ressourcen- und umweltschonende Herstellung sowie die sichere Entsorgung oder Vernichtung von Gefahrstoffen.

Hartnäckige Probleme erfordern häufig unkonventionelle Lösungen. Frei nach diesem Motto haben zahlreiche europäische Arbeitsgruppen der Chemie ein gemeinsames Forschungsprogramm auf die Beine gestellt, das seit kurzem von der EU gefördert wird. Die deutsche Übersetzung des Titels "Chemie in hochenergetischen Mikro-Umgebungen" (Chemistry in High Energy Microenvironments) bietet dem Laien allerdings - wie so häufig - keine echte Hilfe für das Verständnis des Vorhabens. In kurzen Worten zusammengefasst wird sich das Programm mit chemischen Reaktionen unter ungewöhnlichen Reaktionsbedingungen beschäftigen, die eine besonders effiziente lokale Energiezufuhr bewirken. Auf diese Weise können sowohl besondere Synthesen gelingen als auch ungewöhnlich stabile, aber toxische Stoffe vernichtet werden. In der Praxis bedeutet dies den Einsatz von Ultraschall, Mikrowellen, Plasmen oder Lasern für chemische Umsetzungen.


Die beteiligten deutschen Arbeitsgruppen haben Prof. Jürgen Janek vom Physikalisch-Chemischen Institut der Justus-Liebig-Universität Gießen mit der Vertretung der nationalen Interessen im gemeinsamen europäischen Management-Komitee beauftragt. In der Gießener Arbeitsgruppe von Prof. Janek werden u. a. neue plasma-chemische Verfahren entwickelt, die langfristig im Bereich der Abgasreinigung oder Schadstoffvernichtung zum Einsatz kommen könnten.

Chemische Reaktionen erfordern in den meisten Fällen die Zufuhr von Wärme. Diese stellt die notwendige Energie dar, um vorhandene Bindungen in den Ausgangsstoffen zu brechen und damit neue Bindungen knüpfen zu können. Es ist eine alte Laborweisheit, dass viele Reaktionen bereits bei einer relativ geringen Temperaturerhöhung um 10 bis 15 Grad Celsius doppelt so schnell ablaufen. Die Zeiten, in denen diese Temperaturerhöhung allein mit Hilfe eines Bunsenbrenners erreicht werden konnte, sind schon lange vorbei. Heute finden sich in vielen präparativen Laboratorien Mikrowellenöfen, Ultraschallgeräte, leistungsfähige Laser und Plasmageneratoren, mit denen Energie auf andere Art und Weise übertragen werden kann. Mit Mikrowellen kann man gleichmäßiger erhitzen, und Ultraschall erzeugt oft energiegeladene Mikrobläschen, in denen sehr hohe Temperaturen erreicht werden. Mit dem Laser kann man an Oberflächen in Sekundenbruchteilen mühelos mehrere 1000 Grad Celsius erreichen, und in Plasmen reagieren energiereiche Teilchen auch mit sehr reaktionsträgen Stoffen.

Im Rahmen eines auf fünf Jahre angelegten Programms soll die Nutzung derart unkonventioneller Methoden zur Energieübertragung für chemische Reaktionen europaweit vernetzt untersucht werden. Dabei steht die Entwicklung von umweltschonenden Verfahren ("green chemistry") im Mittelpunkt. Sowohl die Abwasserreinigung als auch die Verbesserung von chemischen Synthesen werden untersucht. Das Programm wird als sogenannte COST-Aktion (European COoperation in the Field of Scientific and Technical Research) finanziell von der EU gefördert. Innerhalb der Laufzeit des Programms sollen die beteiligten Arbeitsgruppen ihre Aktivitäten stärker vernetzen, die nationalen Koordinatoren sollen nationale Fördermaßnahmen anregen und bündeln.

Kontaktadresse:

Prof. Dr. Jürgen Janek
Physikalisch-Chemisches Institut
Heinrich-Buff-Ring 58, 35392 Gießen
Tel.: 0641/99-34500, Fax: -34509
e-mail: Juergen.Janek@phys.Chemie.

Christel Lauterbach | idw
Weitere Informationen:
http://www.uni-giessen.de

Weitere Berichte zu: Abgasreinigung COST-Aktion Schadstoffvernichtung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie