Sehen, wie das Gehirn denkt

Die funktionelle Bildgebung ist eine Schlüsseltechnologie der Neurowissenschaften: Sie eröffnet den Forschern den Blick ins menschliche Gehirn. Mit Hilfe der Kernspintomographie werden die Gehirnstrukturen, die unseren mentalen Fähigkeiten zugrunde liegen, mit hoher räumlicher Auflösung direkt sichtbar gemacht.

In Saarbrücken und Homburg ist ein neu gegründeter Arbeitskreis funktionelle Bildgebung dem menschlichen Denken und Erinnern auf der Spur. Die Gehirnforscher interessiert vor allem der Ort des Geschehens: Wo genau werden Handlungen, Bewegungen, Gefühle, Erinnerungen verarbeitet und abspeichert?

Mit Hilfe der funktionellen Kernspintomographie (fMRT) können die Wissenschaftler sichtbar machen, wie das Gehirn denkt. Ein Beispiel: Wenn uns jemand nach unserer Telefonnummer fragt, haben wir meist sofort die Antwort parat. Im Gehirn wird hierfür ein wahres Feuerwerk gezündet. In der Magnetfeld-Röhre lässt sich messen, wo die Geistesblitze am stärksten sind. Die aktiven Gehirnregionen brauchen nämlich mehr Sauerstoff als andere. Es kommt zu erhöhter Blutzufuhr, was wiederum den Magnetismus einzelner Blutbestandteile beeinflusst. Diese Veränderungen kann man bis auf wenige Millimeter genau lokalisieren.

Im Ergebnis erhält der Forscher mehrere Querschnitte des Gehirns – von vorne, hinten, oben und von den Seiten. Die aktiven Zonen können mittels statistischer Verfahren berechnet und farblich sichtbar gemacht werden. So haben die Forscher bereits herausgefunden, dass beim kontextgebundenen Erinnern Regionen des Schläfenlappens auf der Innenseite des Gehirns die Hauptrolle spielen. Die neuen Erkenntnisse sind von Nutzen für die neuropsychologische Diagnostik, die sich z.B. mit frühkindlichen Entwicklungsstörungen befasst, und für die Sprach- und Gedächtnisforschung, die untersucht, wie ein Mensch lernt und sich in seiner Umgebung zurechtfindet.

Der Arbeitskreis funktionelle Bildgebung ist bewusst interdisziplinär angelegt. Beteiligt sind Biologen, Radiologen, Psychologen, Psychiater und weitere neurowissenschaftlich orientierte Forscher aus den Sprachwissenschaften und der Informatik. Organisiert wird der Arbeitskreis von Christoph Krick und Christian Döller, zwei Nachwuchswissenschaftlern aus der Biologie und der Psychologie.

Über Fachdisziplinen hinweg eint die Kollegen das Interesse am menschlichen Gehirn, seiner Funktionsweise aber auch an seinen pathologischen Veränderungen. Die hohe Qualität der Forschungsaktivitäten zeigt sich bereits in der Anfangsphase durch Befund-Präsentationen bei der Jahrestagung der Cognitive Neuroscience Society in New York und durch Publikationen in hochrangig internationalen Fachzeitschriften wie „Neuroimage“.

Fragen beantwortet:

Professor Dr. Axel. Mecklinger
Experimentelle Neuropsychologie
Universität des Saarlandes
Tel. (0681) 302-6510, Fax -6516
E-Mail: mecklinger@mx.

Media Contact

Hochschul- Presseteam idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer