Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die unedle Seite von Gold

06.09.2000


... mehr zu:
»Elektron »Iod »Ion »Kristall
Positiv und negativ geladene Goldteilchen als Kristallgitter-Nachbarn

Reines Gold ist der Inbegriff alles Edlen - auch in der Chemie, denn Gold gilt als sehr reaktionsträge. Ganz so reaktionsträge wie man meinen mag, ist Gold dennoch nicht. So gibt es eine ganze Reihe verschiedener Verbindungen, die Goldatome in unterschiedlichen Oxidationsstufen enthalten. Gold kann dabei auch als positiv oder - wie man seit einigen Jahren weiß - sogar als negativ geladenes Ion vorliegen. Verblüffend ist, dass das edle Metall Gold eine Reihe von Parallelen zu den Halogenen (das sind Fluor, Chlor, Brom, Iod und Astat) aufweist. Insbesondere dem Iod scheint es verwandt: Gold hat eine dem Iod vergleichbare hohe Elektronenaffinität. Die Elektronenaffinität ist ein Maß dafür, wie stark ein Atom ein zusätzliches Elektron an sich binden kann.

Martin Jansen und Anja-Verena Mudring haben nun eine weitere erstaunliche Parallele zur Chemie der Halogene entdeckt: Unter bestimmten Reaktionsbedingungen wird ein Elektron von einem Goldatom auf ein anderes übertragen. Aus elementarem Gold entstehen so positiv und negativ geladene
Goldteilchen. Diesen Vorgang nennt man Disproportionieren.

Wie bringen die Forscher das Gold zu dieser Elektronenübertragung unter seinesgleichen? Lässt man Gold mit den Alkalimetallen Cäsium oder Rubidium und den entsprechenden Alkalimetalloxiden in einem bestimmten Mengenverhältnis bei 425 °C miteinander reagieren, entstehen Verbindungen des Typs (MAu)4(M3AuO2). M steht dabei für das Alkalimetall, Au für Aurum = Gold, O für Sauerstoff.

Strukturuntersuchungen haben ergeben, dass Goldteilchen mit der Oxidationsstufe +1 in dem entstandenen Kristall vorhanden sind. Sie sind an Sauerstoff gebunden - in Form von charakteristischen hantelförmigen O-Au-O-Strukturen. Diese Gruppe nennt man ein Aurat. Daneben liegen im Kristall einfach negativ geladene Au- Ionen, so genannte Aurid-Ionen, vor. Abgeleitet von diesen Strukturmerkmalen ergibt sich der ungewöhnlich klingende Name der ungewöhnlichen Verbindungsklasse: Auridaurat.

"Die neu entdeckten Auridaurate ergänzen die bisher nur kleine Gruppe der Verbindungen, die dasselbe Element in einer positiven und einer negativen Oxidationsstufe nebeneinander enthalten," berichtet Jansen. "Dabei sind diese Goldverbindungen erstaunlich stabil. Trotz des geringen Abstandes von Au- und Au+ im Kristall reagieren die gegensätzlich geladenen Teilchen nicht wieder zu elementarem Gold."


Kontakt:

Prof. Dr.M. Jansen
Max-Planck-Institut für Festkörperforschung
Heisenbergstr. 1
D-70569 Stuttgart
Germany

Fax: (+49) 711-689-1502

E-mail: martin@jansen.mpi-stuttgart.mpg.de

Quelle: Angewandte Chemie 2000, 112 (17), 3194 - 3196
Hrsg.: Gesellschaft Deutscher Chemiker e. V. (GDCh)

Dr. Kurt Begitt |

Weitere Berichte zu: Elektron Iod Ion Kristall

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie