Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kino im Kopf: Wie das Gehirn statische Bilder animiert

07.08.2003


Serien solcher Glass-Muster suggerieren Bewegung


Das Gehirn interpretiert Bewegungsstreifen
Foto: Daniel Sadrowski


Wie das Gehirn statische Bilder animiert, haben Bochumer Neurobiologen zusammen mit einem internationalen Forscherteam herausgefunden: Anders als bisher angenommen, sind dabei Nervenzellen aktiv, die sonst für die Verarbeitung von Bewegungswahrnehmungen zuständig sind. Über die Ergebnisse berichten die Forscher in NATURE vom 7. August 2003.

... mehr zu:
»Affe »Nervenzelle

Wenn der Comic-Superheld seinen Düsenantrieb anwirft, wird’s rasant - und das obwohl sich im Bild eigentlich gar nichts bewegt. Die Animation statischer Bilder übernimmt das Gehirn selbst. Was dabei passiert, hat ein Bochumer Forscherteam um den Neurobiologen Prof. Dr. Klaus-Peter Hoffmann in Zusammenarbeit mit Forschern am Salk Institute in San Diego, USA, und an der University of Western Australia herausgefunden: Anders als bisher angenommen, verarbeitet das Gehirn Informationen über Form und Bewegung nicht strikt getrennt. Die Nervenzellen, die für Bewegungen zuständig sind, sind auch bei der Betrachtung bestimmter statischer Formen aktiv. Über ihre Ergebnisse berichten sie im Wissenschaftsmagazin NATURE vom 7. August 2003.

Menschen und Affen sehen Bewegung im statischen Bild


In der bildenden Kunst und in Comic-Zeichnungen wird eine Bewegung oft durch geschickt platzierte statische Formen suggeriert, in Comics z. B. durch sog. "Bewegungsstreifen". Wenn wir das Bild betrachten, erhalten wir den Eindruck eines sich bewegenden Objektes, ohne dass tatsächlich eine Bewegung im Bild stattfindet. Wie aber animiert unser Gehirn das Bild? Um dies herauszufinden, zeigten die Forscher Menschen und Affen Folgen von sog. Glass-Mustern (s. Abbildung). Sie enthalten keine wirkliche Bewegung, suggerieren dies aber durch die Anordnung der einzelnen Elemente, ähnlich wie die Bewegungsstreifen in Comics. Sowohl die Menschen als auch die Affen sahen Bewegung in diesen Mustern.

"Was"- und "wo"-Pfad im Gehirn

Ableitungen von Nervenzellen in der Hirnrinde der Affen zeigten, welche Hirnareale auf die Muster antworten. Die bisherige Annahme war, dass die Verarbeitung von Informationen über Form und Bewegungen strikt getrennt abläuft: Informationen über Form gelangen von der Sehrinde (primäres visuelles Areal der Hirnrinde) über den sog. "was"-Pfad zum Schläfenlappen (Temporalcortex) und dienen dort vor allem der Objekterkennung. Raum- und Bewegungsinformation gelangen über einen "wo"-Pfad zum Scheitellappen (Parietalcortex). Zur Überraschung der Forscher waren bei den Affen beim Betrachten der statischen Bilder Nervenzellen im Sulcus temporalis superior (STS) aktiv, einem Hirnbereich, der dem "wo"-Pfad angehört und damit eigentlich an der Verarbeitung realer Bewegungen beteiligt ist.

Scheinbare Bewegung beeinflusst die Wahrnehmung realer Bewegung

Dieselben STS-Nervenzellen antworten also sowohl auf eine reale als auch auf eine scheinbare Bewegung. "Es schloss sich daher die Frage an, ob scheinbare Bewegungen die reale Bewegungswahrnehmung beeinflussen", erläutern die Autoren. Ein weiteres Experiment bestätigte diese Annahme. Zeigt man den Probanden - Menschen wie Affen - eine reale Bewegung mit einem Bewegungsstreifen, der leicht von der korrekten Richtung abweicht, so nehmen sie eine abgebogene Bewegungsrichtung wahr. Auch diese Abbiegung spiegelt sich in einer Änderung der Aktivität der STS-Nervenzellen.

Sich zurechtfinden in einer dynamischen Umwelt

"Diese neuen Ergebnisse erweitern die Kenntnisse über das visuelle System und zeigen deutlich, dass die Einteilung in getrennte Verarbeitungspfade für Form und Bewegung nicht absolut ist", so die Forscher. "Das visuelle Bewegungssystem nutzt Informationen über Form, wenn damit die Deutung einer Szene verbessert werden kann." Möglicherweise hat das Bewegungswahrnehmungssystem eine Sensitivität für Form entwickelt, um die Detektion von schnellen Bewegungen zu verbessern. Beispiel: Ein fahrender Rennwagen. Bei hoher Geschwindigkeit verschwimmen Bilder, wobei dem Objekt horizontale Streifen zu folgen scheinen. Je schneller die Bewegung, desto schwieriger ist das Objekt erkennbar, desto einfacher jedoch die Streifen. So vervollständigt sich die Bewegungsverarbeitung; das visuelle System erreicht die Sensitivität, die es uns ermöglicht, uns in einer dynamischen Umwelt zurecht zu finden.

Weitere Informationen:

Prof. Dr. Klaus-Peter Hoffmann,
Lehrstuhl für Zoologie and Neurobiologie
der Ruhr Universität Bochum, 44780 Bochum
Tel. 0234 - 32-24364, Fax: -14185
E-Mail: kph@neurobiologie.ruhr-uni-bochum.de

Bart Krekelberg, Ph. D., Vision Center Laboratory
The Salk Institute, La Jolla, Ca, USA
E-Mail: bart@salk.edu

Dr. Josef König | idw
Weitere Informationen:
http://www.nature.com

Weitere Berichte zu: Affe Nervenzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität
25.04.2017 | Universität Bielefeld

nachricht Wehrhaft gegen aggressiven Sauerstoff - Metalloxid-Nickelschaum-Elektroden in der Wasseraufspaltung
25.04.2017 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen