Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kino im Kopf: Wie das Gehirn statische Bilder animiert

07.08.2003


Serien solcher Glass-Muster suggerieren Bewegung


Das Gehirn interpretiert Bewegungsstreifen
Foto: Daniel Sadrowski


Wie das Gehirn statische Bilder animiert, haben Bochumer Neurobiologen zusammen mit einem internationalen Forscherteam herausgefunden: Anders als bisher angenommen, sind dabei Nervenzellen aktiv, die sonst für die Verarbeitung von Bewegungswahrnehmungen zuständig sind. Über die Ergebnisse berichten die Forscher in NATURE vom 7. August 2003.

... mehr zu:
»Affe »Nervenzelle

Wenn der Comic-Superheld seinen Düsenantrieb anwirft, wird’s rasant - und das obwohl sich im Bild eigentlich gar nichts bewegt. Die Animation statischer Bilder übernimmt das Gehirn selbst. Was dabei passiert, hat ein Bochumer Forscherteam um den Neurobiologen Prof. Dr. Klaus-Peter Hoffmann in Zusammenarbeit mit Forschern am Salk Institute in San Diego, USA, und an der University of Western Australia herausgefunden: Anders als bisher angenommen, verarbeitet das Gehirn Informationen über Form und Bewegung nicht strikt getrennt. Die Nervenzellen, die für Bewegungen zuständig sind, sind auch bei der Betrachtung bestimmter statischer Formen aktiv. Über ihre Ergebnisse berichten sie im Wissenschaftsmagazin NATURE vom 7. August 2003.

Menschen und Affen sehen Bewegung im statischen Bild


In der bildenden Kunst und in Comic-Zeichnungen wird eine Bewegung oft durch geschickt platzierte statische Formen suggeriert, in Comics z. B. durch sog. "Bewegungsstreifen". Wenn wir das Bild betrachten, erhalten wir den Eindruck eines sich bewegenden Objektes, ohne dass tatsächlich eine Bewegung im Bild stattfindet. Wie aber animiert unser Gehirn das Bild? Um dies herauszufinden, zeigten die Forscher Menschen und Affen Folgen von sog. Glass-Mustern (s. Abbildung). Sie enthalten keine wirkliche Bewegung, suggerieren dies aber durch die Anordnung der einzelnen Elemente, ähnlich wie die Bewegungsstreifen in Comics. Sowohl die Menschen als auch die Affen sahen Bewegung in diesen Mustern.

"Was"- und "wo"-Pfad im Gehirn

Ableitungen von Nervenzellen in der Hirnrinde der Affen zeigten, welche Hirnareale auf die Muster antworten. Die bisherige Annahme war, dass die Verarbeitung von Informationen über Form und Bewegungen strikt getrennt abläuft: Informationen über Form gelangen von der Sehrinde (primäres visuelles Areal der Hirnrinde) über den sog. "was"-Pfad zum Schläfenlappen (Temporalcortex) und dienen dort vor allem der Objekterkennung. Raum- und Bewegungsinformation gelangen über einen "wo"-Pfad zum Scheitellappen (Parietalcortex). Zur Überraschung der Forscher waren bei den Affen beim Betrachten der statischen Bilder Nervenzellen im Sulcus temporalis superior (STS) aktiv, einem Hirnbereich, der dem "wo"-Pfad angehört und damit eigentlich an der Verarbeitung realer Bewegungen beteiligt ist.

Scheinbare Bewegung beeinflusst die Wahrnehmung realer Bewegung

Dieselben STS-Nervenzellen antworten also sowohl auf eine reale als auch auf eine scheinbare Bewegung. "Es schloss sich daher die Frage an, ob scheinbare Bewegungen die reale Bewegungswahrnehmung beeinflussen", erläutern die Autoren. Ein weiteres Experiment bestätigte diese Annahme. Zeigt man den Probanden - Menschen wie Affen - eine reale Bewegung mit einem Bewegungsstreifen, der leicht von der korrekten Richtung abweicht, so nehmen sie eine abgebogene Bewegungsrichtung wahr. Auch diese Abbiegung spiegelt sich in einer Änderung der Aktivität der STS-Nervenzellen.

Sich zurechtfinden in einer dynamischen Umwelt

"Diese neuen Ergebnisse erweitern die Kenntnisse über das visuelle System und zeigen deutlich, dass die Einteilung in getrennte Verarbeitungspfade für Form und Bewegung nicht absolut ist", so die Forscher. "Das visuelle Bewegungssystem nutzt Informationen über Form, wenn damit die Deutung einer Szene verbessert werden kann." Möglicherweise hat das Bewegungswahrnehmungssystem eine Sensitivität für Form entwickelt, um die Detektion von schnellen Bewegungen zu verbessern. Beispiel: Ein fahrender Rennwagen. Bei hoher Geschwindigkeit verschwimmen Bilder, wobei dem Objekt horizontale Streifen zu folgen scheinen. Je schneller die Bewegung, desto schwieriger ist das Objekt erkennbar, desto einfacher jedoch die Streifen. So vervollständigt sich die Bewegungsverarbeitung; das visuelle System erreicht die Sensitivität, die es uns ermöglicht, uns in einer dynamischen Umwelt zurecht zu finden.

Weitere Informationen:

Prof. Dr. Klaus-Peter Hoffmann,
Lehrstuhl für Zoologie and Neurobiologie
der Ruhr Universität Bochum, 44780 Bochum
Tel. 0234 - 32-24364, Fax: -14185
E-Mail: kph@neurobiologie.ruhr-uni-bochum.de

Bart Krekelberg, Ph. D., Vision Center Laboratory
The Salk Institute, La Jolla, Ca, USA
E-Mail: bart@salk.edu

Dr. Josef König | idw
Weitere Informationen:
http://www.nature.com

Weitere Berichte zu: Affe Nervenzelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der molekularen Streckbank
24.02.2017 | Technische Universität München

nachricht Sicherungskopie im Zentralhirn: Wie Fruchtfliegen ein Ortsgedächtnis bilden
24.02.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie