Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Pflanzen per Photosynthese die Umwelt "erspüren"

09.07.2003


Der Biologe Dr. Thomas Pfannschmidt von der Universität Jena bei der Vorbereitung von Proteinproben für weitere vergleichende Analysen. (Foto: Scheere/FSU-Fotozentrum)


Biologe der Universität Jena beweist: Photosynthese stellt einen empfindlichen Umweltsensor dar


Leben ist auf der Erde nicht denkbar ohne Photosynthese. Ob Nahrungsmittel, fossile oder biologische Brennstoffe, sie entstammen diesem fundamentalen biologischen Prozess, bei dem Pflanzen das Sonnenlicht in Energie umwandeln. Seit gut 200 Jahren erforschen Wissenschaftler die Photosynthese. Doch erst seit kurzem beginnen die Experten zu verstehen, dass dieser Prozess nicht alleine die Energie für das pflanzliche Wachstum liefert. Die Photosynthese leistet weit mehr, wie PD Dr. Thomas Pfannschmidt vom Institut für Allgemeine Botanik und Pflanzenphysiologie der Universität Jena in seiner jüngst abgeschlossenen Habilitation zeigen konnte. Der Jenaer Biologe und seine Kollegen sind sich sicher, dass die Photosynthese einen empfindlichen Umweltsensor darstellt, der präzise auf das Wasserangebot, die Lichtqualität, den CO2-Gehalt der Atmosphäre und die Versorgung mit Nährstoffen reagiert.

Wie verarbeitet die Photosynthese Informationen über ihre Umwelt und wie schafft sie es, auf Veränderungen quasi "intelligent" zu reagieren? "Die Photosynthese findet in einer hoch spezialisierten und von der übrigen Zelle räumlich getrennten Minifabrik statt", erläutert Pfannschmidt. Diese von Biologen als Chloroplast bezeichnete Fabrik besitzt ein ungewöhnliches Merkmal: eigene Gene. Üblicherweise befindet sich die genetische Information der Zelle im so genannten Zellkern, die Gene für die Photosynthese sind jedoch kurioserweise auf Chloroplast und Zellkern verteilt. Um die Photosyntheseprozesse sinnvoll zu koordinieren, tauschen Kern und Chloroplast immense Datenmengen aus. Lange standen die Photosyntheseforscher vor der Frage, warum ein solch aufwändiges System im Lauf der Evolution erhalten blieb.


1999 brachte Pfannschmidt erstes Licht ins Dunkel der Vermutungen. In einer Versuchsreihe zeigte er mit Kollegen von der Universität Lund, wie sich der Zustand bestimmter Photosynthesekomponenten im Chloroplasten bei extremer Belichtung und Überlastung des Photosyntheseapparates veränderte. Diese so genannten Redox-aktiven Komponenten "erspüren" die Veränderung in der Umwelt und senden Signale direkt an die Chloroplasten-eigenen Photosynthesegene: Während sie einen Teil dieser Gene aktivieren, werden andere gleichzeitig inaktiviert. Weil die Wissenschaftler parallel auch die Leistung der Photosynthese gemessen hatten, konnten sie demonstrieren, wie die regulierte Genaktivität auch die Photosyntheseleistung veränderte und den Lichtverhältnissen angepasst hatte. Damit war bewiesen, dass die Gene des Chloroplasten eine wichtige Rolle für die Verwirklichung von Rückkopplungsschleifen und die Selbstkontrolle der Photosynthese spielen. In weiteren Arbeiten zeigte Pfannschmidt mit seinen Jenaer Mitarbeitern, dass diese Signale auch die Aktivität der Gene im Zellkern beeinflussen und dass damit die Photosynthese eine zentrale Regulatorfunktion in den Zellen von Pflanzen einnimmt.

Was die Photosyntheseexperten fasziniert, besitzt auch einen erheblichen praktischen Nutzen. Rückkopplungsschleifen können die Photosynthese hemmen und vermindern die Produktivität und den Ertrag von Nutzpflanzen. Im Licht globaler Klimaveränderungen mit zunehmendem Kohlendioxidgehalt der Atmosphäre, steigenden Temperaturen und häufigeren Dürren in heute fruchtbaren Regionen erhält die Idee von der Photosynthese als Umweltsensor sogar eine globale Dimension: Um zu verstehen wie Pflanzen auf die künftigen Umweltveränderungen reagieren werden, können die Jenaer Biologen mit ihrer Arbeit dem Puzzle der Photosyntheseregulation eine Vielzahl neuer Bausteine hinzufügen.

Die Photosynthese:

Unter Verbrauch von Wasser (H20) und Kohlendioxid (CO2) aus der Atmosphäre verwandeln Pflanzen dabei die Energie des Sonnenlichts in eine für Organismen nutzbare Form, in Zucker. Ganz nebenbei entsteht auch noch Sauerstoff (O2), den fast alle Arten für die Atmungsprozesse nutzen. Pflanzen tragen mit dieser photosynthetischen Aufnahme von CO2 und der Abgabe von O2 zum Aufbau der Erdatmosphäre bei und prägen das globale Klima.

Kontakt:

PD Dr. Thomas Pfannschmidt
Institut für Botanik und Pflanzenphysiologie
der Universität Jena
Dornburger Straße 159, 07743 Jena
Tel.: 03641 - 949236
Fax: 03641 - 949232
E-Mail: Thomas.Pfannschmidt@uni-jena.de

Axel Burchardt | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Berichte zu: Biologe Chloroplast Photosynthese Umweltsensor Zellkern

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der molekularen Streckbank
24.02.2017 | Technische Universität München

nachricht Sicherungskopie im Zentralhirn: Wie Fruchtfliegen ein Ortsgedächtnis bilden
24.02.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie