Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Pflanzen per Photosynthese die Umwelt "erspüren"

09.07.2003


Der Biologe Dr. Thomas Pfannschmidt von der Universität Jena bei der Vorbereitung von Proteinproben für weitere vergleichende Analysen. (Foto: Scheere/FSU-Fotozentrum)


Biologe der Universität Jena beweist: Photosynthese stellt einen empfindlichen Umweltsensor dar


Leben ist auf der Erde nicht denkbar ohne Photosynthese. Ob Nahrungsmittel, fossile oder biologische Brennstoffe, sie entstammen diesem fundamentalen biologischen Prozess, bei dem Pflanzen das Sonnenlicht in Energie umwandeln. Seit gut 200 Jahren erforschen Wissenschaftler die Photosynthese. Doch erst seit kurzem beginnen die Experten zu verstehen, dass dieser Prozess nicht alleine die Energie für das pflanzliche Wachstum liefert. Die Photosynthese leistet weit mehr, wie PD Dr. Thomas Pfannschmidt vom Institut für Allgemeine Botanik und Pflanzenphysiologie der Universität Jena in seiner jüngst abgeschlossenen Habilitation zeigen konnte. Der Jenaer Biologe und seine Kollegen sind sich sicher, dass die Photosynthese einen empfindlichen Umweltsensor darstellt, der präzise auf das Wasserangebot, die Lichtqualität, den CO2-Gehalt der Atmosphäre und die Versorgung mit Nährstoffen reagiert.

Wie verarbeitet die Photosynthese Informationen über ihre Umwelt und wie schafft sie es, auf Veränderungen quasi "intelligent" zu reagieren? "Die Photosynthese findet in einer hoch spezialisierten und von der übrigen Zelle räumlich getrennten Minifabrik statt", erläutert Pfannschmidt. Diese von Biologen als Chloroplast bezeichnete Fabrik besitzt ein ungewöhnliches Merkmal: eigene Gene. Üblicherweise befindet sich die genetische Information der Zelle im so genannten Zellkern, die Gene für die Photosynthese sind jedoch kurioserweise auf Chloroplast und Zellkern verteilt. Um die Photosyntheseprozesse sinnvoll zu koordinieren, tauschen Kern und Chloroplast immense Datenmengen aus. Lange standen die Photosyntheseforscher vor der Frage, warum ein solch aufwändiges System im Lauf der Evolution erhalten blieb.


1999 brachte Pfannschmidt erstes Licht ins Dunkel der Vermutungen. In einer Versuchsreihe zeigte er mit Kollegen von der Universität Lund, wie sich der Zustand bestimmter Photosynthesekomponenten im Chloroplasten bei extremer Belichtung und Überlastung des Photosyntheseapparates veränderte. Diese so genannten Redox-aktiven Komponenten "erspüren" die Veränderung in der Umwelt und senden Signale direkt an die Chloroplasten-eigenen Photosynthesegene: Während sie einen Teil dieser Gene aktivieren, werden andere gleichzeitig inaktiviert. Weil die Wissenschaftler parallel auch die Leistung der Photosynthese gemessen hatten, konnten sie demonstrieren, wie die regulierte Genaktivität auch die Photosyntheseleistung veränderte und den Lichtverhältnissen angepasst hatte. Damit war bewiesen, dass die Gene des Chloroplasten eine wichtige Rolle für die Verwirklichung von Rückkopplungsschleifen und die Selbstkontrolle der Photosynthese spielen. In weiteren Arbeiten zeigte Pfannschmidt mit seinen Jenaer Mitarbeitern, dass diese Signale auch die Aktivität der Gene im Zellkern beeinflussen und dass damit die Photosynthese eine zentrale Regulatorfunktion in den Zellen von Pflanzen einnimmt.

Was die Photosyntheseexperten fasziniert, besitzt auch einen erheblichen praktischen Nutzen. Rückkopplungsschleifen können die Photosynthese hemmen und vermindern die Produktivität und den Ertrag von Nutzpflanzen. Im Licht globaler Klimaveränderungen mit zunehmendem Kohlendioxidgehalt der Atmosphäre, steigenden Temperaturen und häufigeren Dürren in heute fruchtbaren Regionen erhält die Idee von der Photosynthese als Umweltsensor sogar eine globale Dimension: Um zu verstehen wie Pflanzen auf die künftigen Umweltveränderungen reagieren werden, können die Jenaer Biologen mit ihrer Arbeit dem Puzzle der Photosyntheseregulation eine Vielzahl neuer Bausteine hinzufügen.

Die Photosynthese:

Unter Verbrauch von Wasser (H20) und Kohlendioxid (CO2) aus der Atmosphäre verwandeln Pflanzen dabei die Energie des Sonnenlichts in eine für Organismen nutzbare Form, in Zucker. Ganz nebenbei entsteht auch noch Sauerstoff (O2), den fast alle Arten für die Atmungsprozesse nutzen. Pflanzen tragen mit dieser photosynthetischen Aufnahme von CO2 und der Abgabe von O2 zum Aufbau der Erdatmosphäre bei und prägen das globale Klima.

Kontakt:

PD Dr. Thomas Pfannschmidt
Institut für Botanik und Pflanzenphysiologie
der Universität Jena
Dornburger Straße 159, 07743 Jena
Tel.: 03641 - 949236
Fax: 03641 - 949232
E-Mail: Thomas.Pfannschmidt@uni-jena.de

Axel Burchardt | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Berichte zu: Biologe Chloroplast Photosynthese Umweltsensor Zellkern

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics