Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erfolgreiche Rasterfahndung nach krankmachenden Proteinen

24.06.2003


Kölner Max-Planck-Forscher haben mit Hilfe des Computers Proteine identifiziert, die für viele Erbkrankheiten relevant sind

Mediziner können sich freuen: Die Fahndung nach Proteinen, die bei Erbkrankheiten des Menschen eine Rolle spielen, gleicht nicht länger der Suche nach einer Nadel im Heuhaufen. Sie erhält vielmehr gezielte Unterstützung durch breit angelegte Recherchen in Genom-Datenbanken: Forscher des Max-Planck-Instituts für Züchtungsforschung (MPIZ) in Köln haben per Computer Gene beziehungsweise die dazugehörigen Proteine identifiziert, die wahrscheinlich eine wichtige Rolle bei einer Reihe von Erbkrankheiten wie der Mukoviszidose spielen. In der Juli-Ausgabe des internationalen Fachmagazins Trends in Genetics beschreiben die Biologen Dario Leister und Erik Richly vom Kölner Max-Planck-Institut sowie der britische Mediziner Patrick F. Chinnery von der Medical School in Newcastle upon Tyne die Methode, mit der sie verdächtige Gene aus der Masse des menschlichen Erbguts gefischt haben. Das Ergebnis sind 100 Proteine, die in den Kraftwerken der Zellen - den Mitochondrien sowohl beim Menschen als auch bei Pilzen, Pflanzen und Insekten vorkommen.

Bisher konzentrierten sich die Kölner Forscher vor allem auf Chloroplasten, die Solarzellen der Pflanzen. Für die Modellpflanze Arabidopsis etwa stellten sie fest, welche Gene Produkte, also Proteine bilden, die in die Chloroplasten wandern. Dieser Spürsinn rief den Mediziner Chinnery auf den Plan. Zu seinem Arbeitsgebiet gehört es, den Zusammenhang zwischen menschlichen Erbkrankheiten und Mitochondrien zu klären. Weltweit suchen Wissenschaftler mit den unterschiedlichsten Methoden nach den Mitochondrien-Proteinen, weil sie bei vielen Krankheiten eine Schlüsselrolle inne haben. Doch keine dieser Methoden hat bisher die Frage vollständig beantworten können, welche Proteine in den Zellkraftwerken arbeiten und wie sich diese bei ganz unterschiedlichen Lebewesen unterscheiden.

Gemeinsam mit dem britischen Forscher durchsuchten die Kölner Pflanzenforscher artübergreifend das Erbgut nach solchen Genen, deren Produkte in den Mitochondrien zu finden sind. Der Hintergedanke dabei: Gene und deren Produkte, die sich im Laufe der Evolution bewährt haben, kommen in ganz verschiedenen Lebewesen vor, finden sich also in den Mitochondrien von Mensch und Mücke, Fisch und Fliege, Pilz und Pflanze. Für die Suche nach solch alten Bestandteilen nutzten die Wissenschaftler spezielle Software, mit deren Hilfe sie bestimmte Proteinabschnitte identifizierten. Diese so genannten mitochondrialen Transitpeptide weisen den Proteinen den Weg Richtung Mitochondrien.

Um die Zuverlässigkeit der Vorhersagen zu verbessern, kombinierten die Forscher drei verschiedene Computerprogramme miteinander. Damit nahmen sie das Erbgut von Mensch, Kugelfisch, Fruchtfliege, Anopheles-Mücke, Hefe-Pilzen, dem Fadenwurm Caenorhabditis und einem Malariaparasiten unter die Lupe. Die in silicio-Fahndung lieferte ein erstaunliches Ergebnis.

Ein Vergleich zeigte, dass ein Set von 100 mitochondrialen Proteinen des Menschen auch in allen anderen untersuchten Organismen vorkommt. 18 davon, und damit weit mehr als rein zufällig zu erwarten wären, sind bereits bekannt als Proteine, die mit Erbkrankheiten in Zusammenhang stehen. Das lässt den Schluss zu, dass auch Defekte der restlichen 82 Proteine mit hoher Wahrscheinlichkeit krank machen können. Gestützt wird diese Vermutung durch einen zweiten Befund: Gene für weitere 40 der 100 konservierten Proteine liegen zumindest in Regionen des Erbguts, die man bestimmten Erbkrankheiten zuordnet. Dazu gehören vor allem neurologische Störungen. Die Liste der konservierten Proteine ist daher ein wertvoller Befund, der helfen wird, die Ursachen einer Reihe von Erbkrankheiten zu finden

An dieser Stelle sind nun die Forscher in den Labors wieder an der Reihe. Sie können experimentell überprüfen, ob die identifizierten Gene tatsächlich eine Rolle bei Erbkrankheiten spielen und wie diese gegebenenfalls aussieht. Die bioinformatische Rasterfahndung muss also jetzt durch die experimentelle Zielfahndung im Labor abgelöst werden, betont Dario Leister, einer der beteiligten Max-Planck-Forscher. Das mühsame Gen-für-Gen-Screening des Erbguts könnte dann ein Ende gefunden haben.

Originalveröffentlichung:
Erik Richly, Patrick F. Chinnery and Dario Leister
Evolutionary diversification of mitochondrial proteomes: implications for human disease
TRENDS in Genetics, Juli 2003


Weitere Informationen erhalten Sie von:

Dr. Dario Leister
Max-Planck-Institut für Züchtungsforschung, Köln
Tel.: 0221 5062 - 415
Fax.: 0221 5062 - 413
E-Mail: leister@mpiz-koeln.mpg.de

Silke Dames | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.innovations-report.de/html/profile/profil-484.html
http://www.maxplanck.de/instituteProjekteEinrichtungen/institutsauswahl/zuechtungsforschung/index.html

Weitere Berichte zu: Erbgut Erbkrankheit Gen Mitochondrium Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics