Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ammoniakmoleküle werden mobil

16.06.2003


Abb. 1 Kupferoberfläche mit adsorbierten Ammoniak-Molekülen, aufgenommen mit einem Rastertunnelmikroskop. Die einzelnen Moleküle erscheinen als Hügel mit einer Höhe von etwa 0,1 Nanometer (1 Zehnmillionstel Millimeter). Die linke Abbildung zeigt einen Ausschnitt mit drei Molekülen. Für das Experiment wird die Tunnelspitze genau über einem Ammoniakmolekül positioniert und eine spezielle Kombination von Spannung und Strom verwendet, wobei Elektronen in einem Tunnelprozess durch das Molekül hindurch in die Probe übergehen. Einige dieser Elektronen können charakteristische Schwingungen des Molekülgerüsts anregen, wodurch nachfolgende Reaktionen eingeleitet werden. Diese können als Translations- oder Desorptionsprozesse auftreten. In der rechten Abbildung ist dieser Vorgang an jedem adsorbierten Molekül durchgeführt worden. Dabei sind die oberen beiden Moleküle nach links gewandert, das untere Molekül ist verschwunden, das heißt desorbiert. Für beide Prozesse muss die chemische Bindung zwischen dem Stickstoffatom des Ammoniaks und den darunterliegenden Kupferatomen aufgebrochen werden. Da aber zwei unterschiedliche Schwingungen angeregt wurden, treten zwei ganz unterschiedliche Elementarreaktionen ein.

Foto: Fritz-Haber-Institut der Max-Planck-Gesellschaft


Abb. 2 Schematische Veranschaulichung der Translation und Desorption von Ammoniak-Molekülen auf einer Kupferoberfläche. Das oberen Bild zeigt, wie eine Translation durch die Anregung eines Quantums der Streckschwingung erzeugt wird. Dies geschieht durch Umlagerung der Energie in die Biegeschwingung, die letztendlich zu einem Platzwechsel führt. Ein Energiequant dieser Schwingung besitzt hinreichend Energie, um die so genannte Diffusionsbarriere zu überwinden. Im unteren Teil der Abbildung wird die Biegeschwingung direkt angeregt, doch die Energie einer einzelnen Anregung reicht nicht aus, um eine Desorption einzuleiten. Im Experiment zeigte sich, dass mindestens drei Anregungsquanten notwendig sind, um eine Inversion des Molekülgerüsts zu bewirken (unteres Bild, Mitte), die dann zur Loslösung des Moleküls von der Probenoberfläche (Desorption) führt.

Foto: Fritz-Haber-Institut der Max-Planck-Gesellschaft


Berliner Max-Planck-Forschern ist es gelungen, mit dem Rastertunnel-Mikroskop einzelne Moleküle in einer chemischen Reaktion gezielt zu steuern ein Schlüsselschritt für die Selektive Chemie

... mehr zu:
»Ammoniakmolekül »Atom »Molekül »RTM

Den Ablauf einer chemischen Reaktion steuern zu können, ist seit langem ein Traum in der Chemie. Erwünschte Produkte könnten mit höherer Ausbeute erzeugt und unerwünschte, möglicherweise sogar schädliche Nebenprodukte gleichzeitig reduziert werden. Dazu müssen jedoch die atomaren Bindungen eines Moleküls gezielt geschwächt oder aufgebrochen werden und neue, gewünschte chemische Bindungen sich bilden. Wissenschaftlern des Berliner Fritz-Haber-Institut ist es jetzt gelungen, mit einem Rastertunnelmikroskop (RTM) den Ablauf einer chemischen Reaktion zu steuern. Dazu führten die Forscher die RTM-Spitze sehr nah über einzelne Ammoniakmoleküle auf einer Kupferoberfläche. Je nach Anregungsenergie regten sie auf diese Weise unterschiedliche Molekül-Schwingungen an, auf die die Moleküle dann ganz unterschiedlich reagierten: Im den eine Fall bewegten sich die Moleküle frei auf der Oberfläche hin und her, in dem anderen Fall löst sich das Molekül von der Oberfläche und flog davon. Damit ist es erstmals gelungen, mit Hilfe eines Ratsertunnelmikroskops gezielt unterschiedliche Kanäle einer chemischen Reaktion zu aktivieren bzw. zu unterdrücken (Nature, 29. Mai 2003).

Eine der großen wissenschaftlichen Herausforderungen besteht heute darin, chemische Reaktionen bis in die kleinsten Reaktionsschritte, die auf atomarem Maßstab von weniger als 1 Millionstel Millimeter ablaufen, gezielt steuern zu können. Erst durch ein besseres Verständnis und die Kontrolle dieser atomaren Prozesse können sich die Nanotechnologie, aber auch die klassischen Materialwissenschaften weiterentwickeln. Damit ein Katalysator eine gewünschte chemische Reaktion in Gang bringen kann, müssen die Reaktionspartner zunächst eine chemische Bindung mit seiner Oberfläche eingehen und diese später wieder lösen. Doch wie der Katalysator dabei seine Wirkung im Detail entfaltet, ist bislang kaum erforscht.


Rastertunnel-Mikroskope ermöglichen es heute, einzelne Atome und Moleküle auf Oberflächen abzubilden. Dazu führt man eine feine metallische Abtastspitze so nah an die Oberfläche heran, dass Elektronen zwischen der Spitze und der Oberfläche ,,tunneln können und ein elektrischer Strom fließt. Rastert man diese Oberfläche mit der Spitze Zeile für Zeile ab, kann man aus dem gemessenen Tunnelstrom mit Hilfe des Computers ein genaues Abbild der Oberfläche gewinnen. Diese hochauflösende ,,Luftaufnahme zeigt Details bis hin zu einzelnen Atomen. Diese Schnappschüsse ermöglichen letztlich auch die Beobachtung, wie sich Moleküle oder Atome auf der Oberfläche - durch den Zufluss von Wärmeenergie - bewegen und miteinander wechselwirken.

Doch das Rastertunnelmikroskop ist heute weit mehr als nur ein Beobachtungsinstrument. In jüngster Zeit ist es gelungen, mit dem RTM auch dynamische Prozesse gezielt, also nicht der zufälligen thermischen Bewegung folgend, in Gang zu setzen. Dabei konnten bereits einzelne Teilchen mitgeführt (Diffusion) oder die chemische Bindung in Molekülen gezielt gebrochen werden (Dissoziation). Hierbei wurde bereits klar, dass Elektronen beim Tunneln zwischen Abtastspitze und Oberfläche die dort befindlichen Moleküle zu Schwingungen anregen können. Diese Anregungen erfolgen allerdings nach den Gesetzen der Quantenphysik in ganz bestimmten Energiepaketen (Quanten), die dann zu ganz konkreten Schwingungsformen der Moleküle führen.

Genau dieses Phänomen haben sich nun Forscher am Berliner Fritz-Haber-Institut um J.I. Pascual (er setzt jetzt seine Arbeit in Barcelona fort) und H.-P. Rust zu Nutze gemacht. Als Beobachtungsobjekte nutzten sie einzelne Ammoniak-Moleküle, die pyramidenförmig aufgebaut aus einem zentralen Stickstoff-Atom und drei Wasserstoff-Atomen bestehen. Um thermische Bewegungen der Moleküle zu unterdrücken, die die Messungen überlagern würden, führten sie ihre Experimente bei sehr tiefen Temperaturen (minus 268 Grad) durch. Den Tunnelstrom des RTM steuerten sie derart, dass zwei verschiedene Schwingungsformen eines Ammoniakmoleküls angesprochen wurden, das an der Kupferoberfläche angelagert war. Je nach dem, welche der beiden Schwingungsarten angeregt wurde, ,,reagierte das Ammoniakmolekül anschließend ganz unterschiedlich (siehe Abb. 1).

Originalveröffentlichung:
J.I. Pascual, N. Lorente, Z. Song, H. Conrad, and H.-P. Rust
Selectivity in vibrationally mediated single-molecule chemistry
Nature 429 No. 6939, p. 525 528 (2003)


Weitere Informationen erhalten Sie von:

Dr. Hans-Peter Rust
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin
Tel.: 030 8413 - 4149
Fax.: 030 8413 - 4105
E-Mail: rust@fhi-berlin.mpg.de



Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.fhi-berlin.mpg.de/

Weitere Berichte zu: Ammoniakmolekül Atom Molekül RTM

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

nachricht Nervenkrankheit ALS: Mehr als nur ein Motor-Problem im Gehirn?
16.01.2017 | Leibniz-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie