Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ammoniakmoleküle werden mobil

16.06.2003


Abb. 1 Kupferoberfläche mit adsorbierten Ammoniak-Molekülen, aufgenommen mit einem Rastertunnelmikroskop. Die einzelnen Moleküle erscheinen als Hügel mit einer Höhe von etwa 0,1 Nanometer (1 Zehnmillionstel Millimeter). Die linke Abbildung zeigt einen Ausschnitt mit drei Molekülen. Für das Experiment wird die Tunnelspitze genau über einem Ammoniakmolekül positioniert und eine spezielle Kombination von Spannung und Strom verwendet, wobei Elektronen in einem Tunnelprozess durch das Molekül hindurch in die Probe übergehen. Einige dieser Elektronen können charakteristische Schwingungen des Molekülgerüsts anregen, wodurch nachfolgende Reaktionen eingeleitet werden. Diese können als Translations- oder Desorptionsprozesse auftreten. In der rechten Abbildung ist dieser Vorgang an jedem adsorbierten Molekül durchgeführt worden. Dabei sind die oberen beiden Moleküle nach links gewandert, das untere Molekül ist verschwunden, das heißt desorbiert. Für beide Prozesse muss die chemische Bindung zwischen dem Stickstoffatom des Ammoniaks und den darunterliegenden Kupferatomen aufgebrochen werden. Da aber zwei unterschiedliche Schwingungen angeregt wurden, treten zwei ganz unterschiedliche Elementarreaktionen ein.

Foto: Fritz-Haber-Institut der Max-Planck-Gesellschaft


Abb. 2 Schematische Veranschaulichung der Translation und Desorption von Ammoniak-Molekülen auf einer Kupferoberfläche. Das oberen Bild zeigt, wie eine Translation durch die Anregung eines Quantums der Streckschwingung erzeugt wird. Dies geschieht durch Umlagerung der Energie in die Biegeschwingung, die letztendlich zu einem Platzwechsel führt. Ein Energiequant dieser Schwingung besitzt hinreichend Energie, um die so genannte Diffusionsbarriere zu überwinden. Im unteren Teil der Abbildung wird die Biegeschwingung direkt angeregt, doch die Energie einer einzelnen Anregung reicht nicht aus, um eine Desorption einzuleiten. Im Experiment zeigte sich, dass mindestens drei Anregungsquanten notwendig sind, um eine Inversion des Molekülgerüsts zu bewirken (unteres Bild, Mitte), die dann zur Loslösung des Moleküls von der Probenoberfläche (Desorption) führt.

Foto: Fritz-Haber-Institut der Max-Planck-Gesellschaft


Berliner Max-Planck-Forschern ist es gelungen, mit dem Rastertunnel-Mikroskop einzelne Moleküle in einer chemischen Reaktion gezielt zu steuern ein Schlüsselschritt für die Selektive Chemie

... mehr zu:
»Ammoniakmolekül »Atom »Molekül »RTM

Den Ablauf einer chemischen Reaktion steuern zu können, ist seit langem ein Traum in der Chemie. Erwünschte Produkte könnten mit höherer Ausbeute erzeugt und unerwünschte, möglicherweise sogar schädliche Nebenprodukte gleichzeitig reduziert werden. Dazu müssen jedoch die atomaren Bindungen eines Moleküls gezielt geschwächt oder aufgebrochen werden und neue, gewünschte chemische Bindungen sich bilden. Wissenschaftlern des Berliner Fritz-Haber-Institut ist es jetzt gelungen, mit einem Rastertunnelmikroskop (RTM) den Ablauf einer chemischen Reaktion zu steuern. Dazu führten die Forscher die RTM-Spitze sehr nah über einzelne Ammoniakmoleküle auf einer Kupferoberfläche. Je nach Anregungsenergie regten sie auf diese Weise unterschiedliche Molekül-Schwingungen an, auf die die Moleküle dann ganz unterschiedlich reagierten: Im den eine Fall bewegten sich die Moleküle frei auf der Oberfläche hin und her, in dem anderen Fall löst sich das Molekül von der Oberfläche und flog davon. Damit ist es erstmals gelungen, mit Hilfe eines Ratsertunnelmikroskops gezielt unterschiedliche Kanäle einer chemischen Reaktion zu aktivieren bzw. zu unterdrücken (Nature, 29. Mai 2003).

Eine der großen wissenschaftlichen Herausforderungen besteht heute darin, chemische Reaktionen bis in die kleinsten Reaktionsschritte, die auf atomarem Maßstab von weniger als 1 Millionstel Millimeter ablaufen, gezielt steuern zu können. Erst durch ein besseres Verständnis und die Kontrolle dieser atomaren Prozesse können sich die Nanotechnologie, aber auch die klassischen Materialwissenschaften weiterentwickeln. Damit ein Katalysator eine gewünschte chemische Reaktion in Gang bringen kann, müssen die Reaktionspartner zunächst eine chemische Bindung mit seiner Oberfläche eingehen und diese später wieder lösen. Doch wie der Katalysator dabei seine Wirkung im Detail entfaltet, ist bislang kaum erforscht.


Rastertunnel-Mikroskope ermöglichen es heute, einzelne Atome und Moleküle auf Oberflächen abzubilden. Dazu führt man eine feine metallische Abtastspitze so nah an die Oberfläche heran, dass Elektronen zwischen der Spitze und der Oberfläche ,,tunneln können und ein elektrischer Strom fließt. Rastert man diese Oberfläche mit der Spitze Zeile für Zeile ab, kann man aus dem gemessenen Tunnelstrom mit Hilfe des Computers ein genaues Abbild der Oberfläche gewinnen. Diese hochauflösende ,,Luftaufnahme zeigt Details bis hin zu einzelnen Atomen. Diese Schnappschüsse ermöglichen letztlich auch die Beobachtung, wie sich Moleküle oder Atome auf der Oberfläche - durch den Zufluss von Wärmeenergie - bewegen und miteinander wechselwirken.

Doch das Rastertunnelmikroskop ist heute weit mehr als nur ein Beobachtungsinstrument. In jüngster Zeit ist es gelungen, mit dem RTM auch dynamische Prozesse gezielt, also nicht der zufälligen thermischen Bewegung folgend, in Gang zu setzen. Dabei konnten bereits einzelne Teilchen mitgeführt (Diffusion) oder die chemische Bindung in Molekülen gezielt gebrochen werden (Dissoziation). Hierbei wurde bereits klar, dass Elektronen beim Tunneln zwischen Abtastspitze und Oberfläche die dort befindlichen Moleküle zu Schwingungen anregen können. Diese Anregungen erfolgen allerdings nach den Gesetzen der Quantenphysik in ganz bestimmten Energiepaketen (Quanten), die dann zu ganz konkreten Schwingungsformen der Moleküle führen.

Genau dieses Phänomen haben sich nun Forscher am Berliner Fritz-Haber-Institut um J.I. Pascual (er setzt jetzt seine Arbeit in Barcelona fort) und H.-P. Rust zu Nutze gemacht. Als Beobachtungsobjekte nutzten sie einzelne Ammoniak-Moleküle, die pyramidenförmig aufgebaut aus einem zentralen Stickstoff-Atom und drei Wasserstoff-Atomen bestehen. Um thermische Bewegungen der Moleküle zu unterdrücken, die die Messungen überlagern würden, führten sie ihre Experimente bei sehr tiefen Temperaturen (minus 268 Grad) durch. Den Tunnelstrom des RTM steuerten sie derart, dass zwei verschiedene Schwingungsformen eines Ammoniakmoleküls angesprochen wurden, das an der Kupferoberfläche angelagert war. Je nach dem, welche der beiden Schwingungsarten angeregt wurde, ,,reagierte das Ammoniakmolekül anschließend ganz unterschiedlich (siehe Abb. 1).

Originalveröffentlichung:
J.I. Pascual, N. Lorente, Z. Song, H. Conrad, and H.-P. Rust
Selectivity in vibrationally mediated single-molecule chemistry
Nature 429 No. 6939, p. 525 528 (2003)


Weitere Informationen erhalten Sie von:

Dr. Hans-Peter Rust
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin
Tel.: 030 8413 - 4149
Fax.: 030 8413 - 4105
E-Mail: rust@fhi-berlin.mpg.de



Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.fhi-berlin.mpg.de/

Weitere Berichte zu: Ammoniakmolekül Atom Molekül RTM

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Studie entschlüsselt neue Diabetes-Gene
22.01.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft
22.01.2018 | Humboldt-Universität zu Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics