Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Schalter im Ohr

13.06.2003


Max-Planck-Wissenschaftler entdecken lang gesuchten Kanal, der mechanische Stimuli in Haarsinneszellen in elektrische Signale umwandelt


Elektronenmikroskopische Aufnahme einer 5 Tage alten Zebrafisch-Larve. Zwei Cluster mit Haarsinneszellen des Seitenlinienorgans sind oberhalb des Mauls und weitere Cluster in der Nähe der Augen zu sehen. Fische und Amphibien benutzen das Seitenlinienorgan, um Bewegungen im Wasser zu registrieren.

Foto: Max-Planck-Institut für Entwicklungsbiologie



Mechanische Reize wie Schall oder Bewegung nehmen wir über spezialisierte Rezeptoren, die so genannten sensorischen Haarzellen, im Innenohrs wahr. Diese Zellen verfügen an ihrer Oberfläche über mit winzigen Härchen besetzte Fortsätze. Werden diese Härchen durch Schall oder Bewegung verbogen, strömen Ionen in die Zelle ein und mechanische Energie wird in elektrische Impulse umgewandelt. Im Gegensatz zu den anderen Sinnen wie Sehen, Riechen oder Tasten war bisher nicht bekannt, wie die sensorischen Haarzellen diese Energieumwandlung auf molekularer Ebene schaffen. Aus biophysikalischen Experimenten wusste man lediglich, dass bestimmte Ionenkanäle diese Konversion vermitteln. Jetzt berichten Forscher des Max-Planck-Instituts für Entwicklungsbiologie (Tübingen) und für medizinische Forschung (Heidelberg) gemeinsam in der internationalen Fachzeitschrift "Science" (Science Express 12. Juni 2003) über die Identifizierung des für diese Signalumwandlung verantwortlichen Rezeptor-Moleküls im Zebrafisch. Dieser Ionenkanal ist eines der letzen sensorischen Rezeptormoleküle, das noch unbekannt war vergleichbar dem Rhodopsin im Auge oder den Geruchsrezeptoren in der Nase.



Wir nehmen die Umwelt mit Hilfe unserer Sinne war. Spezialisierte Rezeptoren in Auge, Haut oder Zunge ermöglichen es uns, Licht, Berührung, Schmerz oder Kälte zu registrieren. All diese Sinne beruhen auf der Umwandlung eines Reizes in ein elektrisches Signal, das dann an das Gehirn weitergeleitet wird. Interessanterweise verwenden viele dieser sensorischen Rezeptoren den gleichen Typ von Ionenkanälen, die transient receptor potential channels oder TRP-Kanäle, für die Umwandlung oder Transduktion des Signals. Ionenkanäle sind Proteine, die in der Zellmembran winzige Poren bilden und selektiv kleine Moleküle in die Zelle einströmen lassen. Je nach Stimulus werden diese Kanäle reguliert bzw. geöffnet.

Genetische Studien an verschiedenen Organismen wie Wurm und Fruchtfliege haben sich bisher als sehr erfolgreich bei der Identifizierung von Molekülen erwiesen, die an der Wahrnehmung von Sinneseindrücken beteiligt sind. Ein sehr wichtiger Durchbruch für das molekulare Verständnis der Mechanosensation, also der Umwandlung mechanischer Stimuli in elektrische Signale, gelang im Jahr 2000. Damals identifizierten Walker und Kollegen [R. Walker, A. Willingham, C. Zucker, Science 287, 2229 (2000)] einen neuartigen TRP-Kanal, der in der Fruchtfliege für den Tastsinn benötigt wird. Doch in den Genom-Datenbanken konnte kein homologes Gen bei höheren Tieren gefunden werden, was darauf hindeutete, dass dieser besondere Kanal mit dem Namen NompC möglicherweise nur in wirbellosen Tieren, wie Wurm oder Fliege, vorkommt.

Daher hatte man die Hoffnung, dass NompC auch für die Transduktion in sensorischen Haarzellen benötigt wird, bereits beinahe aufgegeben. Jetzt ist es Forschern an den Max-Planck-Instituten für Entwicklungsbiologie in Tübingen und für Medizinische Forschung in Heidelberg jedoch gelungen, einen dem NompC-Rezeptor in Wirbeltieren entsprechenden Ionenkanal im Zebrafisch zu identifizieren. Die Elimination dieses Kanals und damit auch seiner Aktivität führt bei Zebrafischlarven (3-4 Tage alt) zu Taubheit. Elektrische Ableitungen, die an sensorischen Haarzellen von Zebrafischen durchgeführt wurden, zeigten, dass NompC tatsächlich für die Transduktion eines mechanischen Reizes benötigt wird.

Damit ist es den Wissenschaftlern gelungen nachzuweisen, dass die Wahrnehmung von mechanischen Reizen bei niederen wie bei höheren Tieren von einem entwicklungsgeschichtlich verwandten Ionenkanal, NompC, gesteuert wird. Daher ist es sehr wahrscheinlich, dass dieses spezielle sensorische System bereits in einem gemeinsamen Vorfahren von Gliederfüßlern und Wirbeltieren ausgebildet wurde.

Dr. Teresa Nicolson | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.maxplanck.de/instituteProjekteEinrichtungen/institutsauswahl/entwicklungsbiologie/index.html

Weitere Berichte zu: Haarzelle Ionenkanal Kanal NompC Reize Rezeptor Umwandlung Zebrafisch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie