Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Schalter im Ohr

13.06.2003


Max-Planck-Wissenschaftler entdecken lang gesuchten Kanal, der mechanische Stimuli in Haarsinneszellen in elektrische Signale umwandelt


Elektronenmikroskopische Aufnahme einer 5 Tage alten Zebrafisch-Larve. Zwei Cluster mit Haarsinneszellen des Seitenlinienorgans sind oberhalb des Mauls und weitere Cluster in der Nähe der Augen zu sehen. Fische und Amphibien benutzen das Seitenlinienorgan, um Bewegungen im Wasser zu registrieren.

Foto: Max-Planck-Institut für Entwicklungsbiologie



Mechanische Reize wie Schall oder Bewegung nehmen wir über spezialisierte Rezeptoren, die so genannten sensorischen Haarzellen, im Innenohrs wahr. Diese Zellen verfügen an ihrer Oberfläche über mit winzigen Härchen besetzte Fortsätze. Werden diese Härchen durch Schall oder Bewegung verbogen, strömen Ionen in die Zelle ein und mechanische Energie wird in elektrische Impulse umgewandelt. Im Gegensatz zu den anderen Sinnen wie Sehen, Riechen oder Tasten war bisher nicht bekannt, wie die sensorischen Haarzellen diese Energieumwandlung auf molekularer Ebene schaffen. Aus biophysikalischen Experimenten wusste man lediglich, dass bestimmte Ionenkanäle diese Konversion vermitteln. Jetzt berichten Forscher des Max-Planck-Instituts für Entwicklungsbiologie (Tübingen) und für medizinische Forschung (Heidelberg) gemeinsam in der internationalen Fachzeitschrift "Science" (Science Express 12. Juni 2003) über die Identifizierung des für diese Signalumwandlung verantwortlichen Rezeptor-Moleküls im Zebrafisch. Dieser Ionenkanal ist eines der letzen sensorischen Rezeptormoleküle, das noch unbekannt war vergleichbar dem Rhodopsin im Auge oder den Geruchsrezeptoren in der Nase.



Wir nehmen die Umwelt mit Hilfe unserer Sinne war. Spezialisierte Rezeptoren in Auge, Haut oder Zunge ermöglichen es uns, Licht, Berührung, Schmerz oder Kälte zu registrieren. All diese Sinne beruhen auf der Umwandlung eines Reizes in ein elektrisches Signal, das dann an das Gehirn weitergeleitet wird. Interessanterweise verwenden viele dieser sensorischen Rezeptoren den gleichen Typ von Ionenkanälen, die transient receptor potential channels oder TRP-Kanäle, für die Umwandlung oder Transduktion des Signals. Ionenkanäle sind Proteine, die in der Zellmembran winzige Poren bilden und selektiv kleine Moleküle in die Zelle einströmen lassen. Je nach Stimulus werden diese Kanäle reguliert bzw. geöffnet.

Genetische Studien an verschiedenen Organismen wie Wurm und Fruchtfliege haben sich bisher als sehr erfolgreich bei der Identifizierung von Molekülen erwiesen, die an der Wahrnehmung von Sinneseindrücken beteiligt sind. Ein sehr wichtiger Durchbruch für das molekulare Verständnis der Mechanosensation, also der Umwandlung mechanischer Stimuli in elektrische Signale, gelang im Jahr 2000. Damals identifizierten Walker und Kollegen [R. Walker, A. Willingham, C. Zucker, Science 287, 2229 (2000)] einen neuartigen TRP-Kanal, der in der Fruchtfliege für den Tastsinn benötigt wird. Doch in den Genom-Datenbanken konnte kein homologes Gen bei höheren Tieren gefunden werden, was darauf hindeutete, dass dieser besondere Kanal mit dem Namen NompC möglicherweise nur in wirbellosen Tieren, wie Wurm oder Fliege, vorkommt.

Daher hatte man die Hoffnung, dass NompC auch für die Transduktion in sensorischen Haarzellen benötigt wird, bereits beinahe aufgegeben. Jetzt ist es Forschern an den Max-Planck-Instituten für Entwicklungsbiologie in Tübingen und für Medizinische Forschung in Heidelberg jedoch gelungen, einen dem NompC-Rezeptor in Wirbeltieren entsprechenden Ionenkanal im Zebrafisch zu identifizieren. Die Elimination dieses Kanals und damit auch seiner Aktivität führt bei Zebrafischlarven (3-4 Tage alt) zu Taubheit. Elektrische Ableitungen, die an sensorischen Haarzellen von Zebrafischen durchgeführt wurden, zeigten, dass NompC tatsächlich für die Transduktion eines mechanischen Reizes benötigt wird.

Damit ist es den Wissenschaftlern gelungen nachzuweisen, dass die Wahrnehmung von mechanischen Reizen bei niederen wie bei höheren Tieren von einem entwicklungsgeschichtlich verwandten Ionenkanal, NompC, gesteuert wird. Daher ist es sehr wahrscheinlich, dass dieses spezielle sensorische System bereits in einem gemeinsamen Vorfahren von Gliederfüßlern und Wirbeltieren ausgebildet wurde.

Dr. Teresa Nicolson | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.maxplanck.de/instituteProjekteEinrichtungen/institutsauswahl/entwicklungsbiologie/index.html

Weitere Berichte zu: Haarzelle Ionenkanal Kanal NompC Reize Rezeptor Umwandlung Zebrafisch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie