Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Universelle Regel für Wasserstoff entdeckt

06.06.2003


Visualisierung der Defektwellenfunktion eines Wasserstoffatoms, welches mit einem Halbleiter (CdTe) wechselwirkt. Wasserstoff (gelb) bindet mit einem Cd-Atom (grün) und bricht dadurch die Bindung zwischen einem Cd und einem Te-Atom (blau). Die transparenten Kugeln markieren die Positionen der Atome im idealen Gitter. Die rosafarbene Fläche zeigt die berechnete Wellenfunktion. Aufbauend auf solchen Rechnungen gelang es, eine universelle Regel für die Ausrichtung der elektronischen Niveaus des Wasserstoffs aufzustellen.

Foto: Fritz-Haber-Institut


Wissenschaftler des Fritz-Haber-Instituts und des Palo Alto Research Center/USA finden allgemeines Gesetz, mit dem man vorhersagen kann, wie Wasserstoff die Eigenschaften von Materialien und Lösungen beeinflusst


Wasserstoff ist das am häufigsten vorkommende Element im Universum. Auf der Erde kennen wir es hauptsächlich als Komponente von Wasser (H2O). Doch auf Grund der geringen Größe seiner Atome wird Wasserstoff häufig auch innerhalb von Materialien eingebaut, wo er ganz wesentlich die Materialeigenschaften beeinflusst. Um neue Materialien entwickeln bzw. vorhandene verbessern zu können, wäre es daher wichtig, wenn man verstehen und sogar voraussagen könnte, wie Wasserstoff sich in unterschiedlichen Materialien oder Lösungen verhält. Jetzt haben Wissenschaftler am Fritz-Haber-Institut in Berlin und am Forschungszentrum in Palo Alto/USA (Palo Alto Research Center PARC) mit Hilfe von aufwändigen Computersimulationen überraschend eine universell gültige Regel entdeckt, nach der man künftig präzise vorhersagen kann, wie Wasserstoff die Eigenschaften von so unterschiedlichen Systemen wie Halbleitern, Isolatoren und Lösungsmitteln beeinflusst (Nature, 5. Juni 2003).

Eine der wichtigsten Eigenschaften von Wasserstoff ist seine Fähigkeit, Elektronen aus einem Material aufnehmen bzw. an das Material abgeben zu können. Dank dieser Eigenschaft wirkt Wasserstoff in vielen Materialien wie ein Schwamm er saugt überschüssige Elektronen oder Löcher (fehlende Elektronen) einfach auf. Dieser Effekt wird in der Halbleiterindustrie extensiv genutzt. Beispielsweise bilden sich selbst unter Reinstraum-Bedingungen Defekte, also Unvollkommenheiten, im Material mit häufig fatalen Folgen für die Effizienz und Lebensdauer von Halbleiterbauelementen. Wasserstoff macht solche Defekte dank seines schwammartigen Charakters unschädlich.


Diese Eigenschaft von Wasserstoff wird jedoch nicht nur in der Halbleiterindustrie genutzt, sondern ist einer der fundamentalsten Prozesse in vielen chemischen und biologischen Reaktionen. Beispiele sind Speichersysteme für Wasserstoff, Brennstoffzellen, Katalysatoren, aber auch die Aktivität von Biomolekülen in Lösungen.

Eine Schlüsselgröße, um dieses Verhalten von Wasserstoff zu beschreiben, ist das so genannte Übergangsniveau (transition energy): Liegt dieses Energieniveau oberhalb des Elektronenreservoirs (chemischen Potentials) der Umgebung, gibt Wasserstoff Elektronen ab, ist es unterhalb, kann Wasserstoff Elektronen aufnehmen. Um dieses Niveau genau zu bestimmen, waren bisher aufwändige Experimente bzw. umfangreiche Rechnungen erforderlich. Eine einfache Regel, die schnelle und unkomplizierte Vorhersagen erlauben würde, gab es nicht.

Chris G. Van de Walle vom Palo Alto Research Center (PARC) im Silicon Valley (Kalifornien) und Jörg Neugebauer vom Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin haben jetzt modernste Hochleistungscomputer genutzt, um diesem Problem auf den Grund zu gehen. Ihre so genannten ab initio aus ersten Prinzipien Simulationen beruhen auf den grundlegenden physikalischen Gesetzen der Quantenmechanik und sind völlig frei von Anpassungsparametern. Ausgerüstet mit diesem äußerst leistungsfähigen theoretischen Werkzeug berechneten sie systematisch die Übergangsniveaus des Wasserstoffs für verschiedenste Materialklassen. Dabei entdeckten sie völlig überraschend, dass diese Niveaus einheitlich ausgerichtet sind sie liegen praktisch auf einer Linie. Diese Ausrichtung ist dabei nicht auf einzelne Materialklassen beschränkt, sondern völlig universell: Sie gilt für so verschiedene Systeme wie Halbleiter, Isolatoren oder sogar für Flüssigkeiten. Zu unserer großen Überraschung stellten wir fest, dass das Übergangsniveau nicht materialabhängig ist, auch wenn der Wasserstoff völlig unterschiedlich in verschiedene Materialien eingebaut wird. Unsere Regel verbindet damit bisher als getrennt betrachtete Gebiete, wie die Materialforschung und die Biochemie des Lebens, sagt Jörg Neugebauer, einer der beteiligten Forscher und Leiter einer Nachwuchsgruppe am Fritz-Haber-Institut.

Dank der Kenntnis dieser universellen Regel ist es in Zukunft viel leichter, dass Verhalten von Wasserstoff in neuartigen bzw. in neu zu entwickelnden Materialsystemen vorauszusagen. Konkrete Anwendungen ergeben sich beispielsweise bei der Entwicklung von ultravioletten Laserdioden, die für die nächste Generation von DVD-Spielern benötigt werden, für die drahtlose Kommunikation, für Wasserstoffspeicher und Brennstoffzellensysteme.

Weitere Informationen erhalten Sie von:

Dr. Jörg Neugebauer
Fritz-Haber-Institut der Max-Planck-Gesellschaft
Berlin-Dahlem
Tel.: 030 8413 - 4826
Fax.: 030 8413 - 4701
E-Mail: neugebauer@fhi-berlin.mpg.de

Dr. Jörg Neugebauer | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.maxplanck.de/instituteProjekteEinrichtungen/institutsauswahl/fritz_haber_institut/index.html

Weitere Berichte zu: Elektron Fritz-Haber-Institut Wasserstoff

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab
17.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau