Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Universelle Regel für Wasserstoff entdeckt

06.06.2003


Visualisierung der Defektwellenfunktion eines Wasserstoffatoms, welches mit einem Halbleiter (CdTe) wechselwirkt. Wasserstoff (gelb) bindet mit einem Cd-Atom (grün) und bricht dadurch die Bindung zwischen einem Cd und einem Te-Atom (blau). Die transparenten Kugeln markieren die Positionen der Atome im idealen Gitter. Die rosafarbene Fläche zeigt die berechnete Wellenfunktion. Aufbauend auf solchen Rechnungen gelang es, eine universelle Regel für die Ausrichtung der elektronischen Niveaus des Wasserstoffs aufzustellen.

Foto: Fritz-Haber-Institut


Wissenschaftler des Fritz-Haber-Instituts und des Palo Alto Research Center/USA finden allgemeines Gesetz, mit dem man vorhersagen kann, wie Wasserstoff die Eigenschaften von Materialien und Lösungen beeinflusst


Wasserstoff ist das am häufigsten vorkommende Element im Universum. Auf der Erde kennen wir es hauptsächlich als Komponente von Wasser (H2O). Doch auf Grund der geringen Größe seiner Atome wird Wasserstoff häufig auch innerhalb von Materialien eingebaut, wo er ganz wesentlich die Materialeigenschaften beeinflusst. Um neue Materialien entwickeln bzw. vorhandene verbessern zu können, wäre es daher wichtig, wenn man verstehen und sogar voraussagen könnte, wie Wasserstoff sich in unterschiedlichen Materialien oder Lösungen verhält. Jetzt haben Wissenschaftler am Fritz-Haber-Institut in Berlin und am Forschungszentrum in Palo Alto/USA (Palo Alto Research Center PARC) mit Hilfe von aufwändigen Computersimulationen überraschend eine universell gültige Regel entdeckt, nach der man künftig präzise vorhersagen kann, wie Wasserstoff die Eigenschaften von so unterschiedlichen Systemen wie Halbleitern, Isolatoren und Lösungsmitteln beeinflusst (Nature, 5. Juni 2003).

Eine der wichtigsten Eigenschaften von Wasserstoff ist seine Fähigkeit, Elektronen aus einem Material aufnehmen bzw. an das Material abgeben zu können. Dank dieser Eigenschaft wirkt Wasserstoff in vielen Materialien wie ein Schwamm er saugt überschüssige Elektronen oder Löcher (fehlende Elektronen) einfach auf. Dieser Effekt wird in der Halbleiterindustrie extensiv genutzt. Beispielsweise bilden sich selbst unter Reinstraum-Bedingungen Defekte, also Unvollkommenheiten, im Material mit häufig fatalen Folgen für die Effizienz und Lebensdauer von Halbleiterbauelementen. Wasserstoff macht solche Defekte dank seines schwammartigen Charakters unschädlich.


Diese Eigenschaft von Wasserstoff wird jedoch nicht nur in der Halbleiterindustrie genutzt, sondern ist einer der fundamentalsten Prozesse in vielen chemischen und biologischen Reaktionen. Beispiele sind Speichersysteme für Wasserstoff, Brennstoffzellen, Katalysatoren, aber auch die Aktivität von Biomolekülen in Lösungen.

Eine Schlüsselgröße, um dieses Verhalten von Wasserstoff zu beschreiben, ist das so genannte Übergangsniveau (transition energy): Liegt dieses Energieniveau oberhalb des Elektronenreservoirs (chemischen Potentials) der Umgebung, gibt Wasserstoff Elektronen ab, ist es unterhalb, kann Wasserstoff Elektronen aufnehmen. Um dieses Niveau genau zu bestimmen, waren bisher aufwändige Experimente bzw. umfangreiche Rechnungen erforderlich. Eine einfache Regel, die schnelle und unkomplizierte Vorhersagen erlauben würde, gab es nicht.

Chris G. Van de Walle vom Palo Alto Research Center (PARC) im Silicon Valley (Kalifornien) und Jörg Neugebauer vom Fritz-Haber-Institut der Max-Planck-Gesellschaft in Berlin haben jetzt modernste Hochleistungscomputer genutzt, um diesem Problem auf den Grund zu gehen. Ihre so genannten ab initio aus ersten Prinzipien Simulationen beruhen auf den grundlegenden physikalischen Gesetzen der Quantenmechanik und sind völlig frei von Anpassungsparametern. Ausgerüstet mit diesem äußerst leistungsfähigen theoretischen Werkzeug berechneten sie systematisch die Übergangsniveaus des Wasserstoffs für verschiedenste Materialklassen. Dabei entdeckten sie völlig überraschend, dass diese Niveaus einheitlich ausgerichtet sind sie liegen praktisch auf einer Linie. Diese Ausrichtung ist dabei nicht auf einzelne Materialklassen beschränkt, sondern völlig universell: Sie gilt für so verschiedene Systeme wie Halbleiter, Isolatoren oder sogar für Flüssigkeiten. Zu unserer großen Überraschung stellten wir fest, dass das Übergangsniveau nicht materialabhängig ist, auch wenn der Wasserstoff völlig unterschiedlich in verschiedene Materialien eingebaut wird. Unsere Regel verbindet damit bisher als getrennt betrachtete Gebiete, wie die Materialforschung und die Biochemie des Lebens, sagt Jörg Neugebauer, einer der beteiligten Forscher und Leiter einer Nachwuchsgruppe am Fritz-Haber-Institut.

Dank der Kenntnis dieser universellen Regel ist es in Zukunft viel leichter, dass Verhalten von Wasserstoff in neuartigen bzw. in neu zu entwickelnden Materialsystemen vorauszusagen. Konkrete Anwendungen ergeben sich beispielsweise bei der Entwicklung von ultravioletten Laserdioden, die für die nächste Generation von DVD-Spielern benötigt werden, für die drahtlose Kommunikation, für Wasserstoffspeicher und Brennstoffzellensysteme.

Weitere Informationen erhalten Sie von:

Dr. Jörg Neugebauer
Fritz-Haber-Institut der Max-Planck-Gesellschaft
Berlin-Dahlem
Tel.: 030 8413 - 4826
Fax.: 030 8413 - 4701
E-Mail: neugebauer@fhi-berlin.mpg.de

Dr. Jörg Neugebauer | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.maxplanck.de/instituteProjekteEinrichtungen/institutsauswahl/fritz_haber_institut/index.html

Weitere Berichte zu: Elektron Fritz-Haber-Institut Wasserstoff

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie