Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"DNA in der Klemme" - Struktur eines Schlüsselenzyms im Zellkern aufgeklärt

26.05.2003


Verglichen mit anderen Enzymen ist sie ein wahrer Gigant - und jetzt ist endlich ihre komplette Struktur aufgeklärt. Die RNA-Polymerase II spielt eine wichtige Rolle bei der Umsetzung von genetischen, also im Erbmolekül DNA enthaltenen, Informationen in Proteine.



Das Enzym, kurz RNA-Pol II, fertigt in allen höheren Organismen Abschriften von Gensequenzen an, die dann aus dem Zellkern in die Zellflüssigkeit transportiert werden, wo die Umsetzung in Proteine erfolgt. Prof. Patrick Cramer und seinen Mitarbeitern Karim Armache und Hubert Kettenberger vom Genzentrum der LMU ist jetzt die Aufklärung der Struktur des gesamten Enzyms gelungen, das an so zentraler Stelle in der Zelle wirkt, dass es für alle biochemischen Prozesse von entscheidender Bedeutung ist. "Dies ist die größte bekannte Molekularstruktur eines asymmetrischen Proteinkomplexes", betont Cramer. Die Arbeit ist online in den Proceedings of the National Academy of Sciences unter dem Titel "Architecture of initiation-competent 12-subunit RNA polymerase II" erschienen. Eine Druckversion folgt in Kürze. "Unsere Arbeit ist für Biochemiker und Genetiker wichtig", so Cramer. "Sie können jetzt anhand der von uns ermittelten Enzym-Struktur ihre Ergebnisse neu interpretieren und auch gezielt neue Experimente planen."

... mehr zu:
»DNA »Enzym »Gen »Protein »RNA-Polymerase »Zelle »Zellkern


Die menschliche Erbinformation ist in der DNA gespeichert. Wie bei einem Bauplan muss die Erbinformation aber auch umgesetzt werden. In der Zelle erfolgt die Übersetzung genetischer Information einzelner DNA-Abschnitte, der Gene, in Proteine. Dabei ist zunächst ein logistisches Problem zu bewältigen: Die DNA liegt im Zellkern und ist durch dessen Doppelmembran von der Zellflüssigkeit getrennt. Eben darin sind aber die Ribosomen, also Protein-synthetisierenden Zellbestandteile, enthalten. Die Zelle setzt zur Informationsübertragung kleine Boten ein. Dabei handelt es sich um kurze Molekülketten, Abschriften der Gene, die im Zellkern produziert und durch seine Doppelmembran in die Zellflüssigkeit gelangen können. Diese kurzen Molekülketten heißen, weil sie der DNA chemisch ähneln, RNA. Weil sie genetische Informationen transportieren, heißen sie auch "Boten-RNA" oder englisch "messenger-RNA", kurz "mRNA".

Die Produktion der verschiedenen mRNAs ist ein entscheidender und streng kontrollierter Vorgang in der Zelle. Denn nur so kann die genetische Information der DNA umgesetzt werden. Wird ein Gen fälschlicherweise nicht in mRNA übertragen, kann ein wichtiges Protein fehlen. Wird aber ein Gen zum falschen Zeitpunkt aktiviert oder zuviel mRNA produziert, kann dies ebenfalls wichtige Prozesse im Körper stören. Der wichtige Vorgang der "Abschrift" von Genen in mRNAs wird von einem Enzym übernommen, der RNA-Polymerase II, einem aus zwölf Untereinheiten bestehenden Protein-Komplex. Der Prozess der Gen-Abschrift unterteilt sich in mehrere Schritte, die alle mit hoher Genauigkeit vorgenommen werden müssen, um möglicherweise gravierende Konsequenzen zu vermeiden.

Zu den Aufgaben der RNA-Pol II gehört - und das ist einer der kritischen Schritte - die Erkennung von Genen, die in mRNA übersetzt werden sollen. Das Enzym "dröselt" dann an der betreffenden Stelle die DNA auf, die zwei umeinander gezwirbelten Fäden gleicht. Die RNA-Pol II heftet sich an und schließt sich wie eine Klammer fest um einen der beiden DNA-Stränge, um ihn festzuhalten. Diese Funktion und außerordentliche Aktivität des Enzyms ist von besonderem Interesse für die Wissenschaftler - die jetzt ermittelte Struktur kann neue Erkenntnisse dazu liefern.

Das angelagerte Enzym gleitet dann an dem "umklammerten" DNA-Strang entlang und produziert gleichzeitig einen mRNA-Strang, der der DNA-Gensequenz gleicht. Dazu muß die RNA-Polymerase den DNA-Doppelstrang immer weiter nach vorne hin öffnen und hinten gleichzeitig schließen. Die letzte Aufgabe besteht darin, das Ende einer Gensequenz zu erkennen und sich abzulösen. Ein RNA-Strang wird freigesetzt und von anderen Enzymen modifiziert, bevor er aus dem Zellkern transportiert wird. Erstaunlich daran ist nicht nur, dass das "Multi-tasking"-Talent RNA-Polymerase II derart viele Aufgaben gleichzeitig erfüllt, sondern dass dies noch dazu mit außerordentlicher Geschwindigkeit und extrem hoher Genauigkeit geschieht.

Der Prozeß der "DNA-Abschrift" ist äußerst komplex, weswegen das Enzym von anderen Protein-Faktoren unterstützt wird, um Fehler zu vermeiden. "Wir haben bereits ein erstes Folgeprojekt erfolgreich initiiert, bei dem wir die RNA-Polymerase II mit ihren zwölf Untereinheiten um eines dieser regulatorischen Proteine erweitern", berichtet Cramer. "Damit sind wir in der Lage, auch die dreidimensionale Architektur dieses noch größeren Komplexes zu bestimmen, was uns wichtige mechanistische Einblicke in die Regulation der Abschrift von Gensequenzen in RNA gibt." Mit dem jetzt erreichten Erfolg ist Cramer, der dieses Projekt in den USA begonnen hat, ein Durchbruch auf einem international besetzten Feld gelungen. "Für mich ist das ein wichtiges wissenschaftspolitisches Zeichen für anstehende Hochschulreformen", so Cramer. "Es zeigt, dass man in Deutschland mit jüngerem Alter und fehlender Habilitation erfolgreich sein kann."

Ansprechpartner:

Prof. Dr. Patrick Cramer
Institut für Biochemie und Genzentrum der LMU
Telefon: 089 - 2180-76953
email: cramer@LMB.uni-muenchen.de

Cornelia Glees-zur Bonsen | idw
Weitere Informationen:
http://www.lmb.uni-muenchen.de/cramer/people_cramer.html

Weitere Berichte zu: DNA Enzym Gen Protein RNA-Polymerase Zelle Zellkern

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie die Niere bei Wassermangel hochkonzentrierten Urin herstellt
14.12.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Von der Proteinstruktur zur Behandlung der zystischen Fibrose
14.12.2017 | Universität Zürich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Protein Structure Could Unlock New Treatments for Cystic Fibrosis

14.12.2017 | Life Sciences

Cardiolinc™: an NPO to personalize treatment for cardiovascular disease patients

14.12.2017 | Life Sciences

ASU scientists develop new, rapid pipeline for antimicrobials

14.12.2017 | Health and Medicine