Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gut geheizte Kinderstube macht Bienen klüger

20.05.2003


Honigbienen können das Lernverhalten und die Kommunikationsfähigkeit ihrer Nachkommen selbst bestimmen.


Kluge Bienen sammeln effektiv Nektar, erzeugen damit genug Wärme für den Nachwuchs (unten eine Puppe) und bringen auf diese Weise wieder kluge Bienen hervor. Das haben Würzburger Zoologen entdeckt. Bilder: Bujok, Groh, Kleinhenz, Rössler, Tautz



Entscheidend dabei ist die Temperatur, bei der sich die Bienenpuppen entwickeln. Das berichtet die Arbeitsgruppe des Zoologen Prof. Dr. Jürgen Tautz von der Uni Würzburg in der neuen Ausgabe des US-amerikanischen Wissenschaftsblatts PNAS (Proceedings of the National Academy of Sciences).

... mehr zu:
»Biene »Kolonie »Nektar »Nervensystem »Temperatur


Kluge Bienen sammeln effektiv Nektar, erzeugen damit genug Wärme für den Nachwuchs (unten eine Puppe) und bringen auf diese Weise wieder kluge Bienen hervor. Das haben Würzburger Zoologen entdeckt. Bilder: Bujok, Groh, Kleinhenz, Rössler, Tautz
Eine Kolonie Honigbienen sammelt im Laufe eines Sommers Blütennektar mit einem Energiegehalt von insgesamt fünf Millionen Kilo-Joules. Um dies möglichst effektiv erledigen zu können, müssen die Bienen über hoch entwickelte Lern- und Kommunikationsfähigkeiten verfügen: Sie müssen sich die Landschaft einprägen, um vom Stock zur Blütenwiese und zurück zu finden. Außerdem müssen sie den Umgang mit den unterschiedlichen Blütentypen lernen. Auch der Schwänzeltanz, mit dem sie ihren Nestgenossinnen die Lage einer Futterstelle mitteilen, ist eine komplexe Kommunikationsform, die höchste Leistungen vom Nervensystem der Bienen fordert.


Die Ausbildung all dieser Fähigkeiten hängt von der Temperatur im Brutnest ab, wo sich die Larven über Puppen zu erwachsenen Bienen entwickeln. Eine Kolonie verwendet etwa 40 Prozent der im Nektar steckenden Energie, um das Brutnest auf eine mittlere Temperatur von 35 Grad Celsius zu klimatisieren. Dieser statistische Mittelwert lässt sich aufdröseln, wie die Arbeiten im Labor von Jürgen Tautz gezeigt haben: In Wirklichkeit stellt sich das Brutnest wie eine Art Flickenteppich mit unterschiedlich temperierten Brutbereichen dar.

Um zu testen, welche Folgen das für die Bienen hat, überführten die Zoologen Bienenpuppen in Brutschränke, in denen die Temperaturunterschiede imitiert wurden. Ein Teil der Puppen wurde Temperaturen bis zu höchstens 34,5 Grad Celsius ausgesetzt, was unter natürlichen Bedingungen regelmäßig vorkommt. Aus ihnen entstanden Bienen, die ihr angelerntes Wissen leichter vergessen und deren Schwänzeltänze weniger wirksam sind. Die "klügsten" Bienen entwickelten sich dagegen aus Puppen, die bei 36 Grad Celsius gehalten wurden.

Schon der Altmeister der Bienenforschung, der Nobelpreisträger Karl von Frisch, hatte vor 80 Jahren in seinen Notizen verwundert die Beobachtung von "guten" und "schlechten" Tänzerinnen festgehalten. Er war also damals schon dem heute nun etwas besser verstandenen Phänomen auf der Spur.

"Man kann vermuten, dass es rein äußere Bedingungen wie eine ungünstige Position der Brutzellen innerhalb des Nestes sind, die eine durchgehend optimale Temperierung verhindern", so Tautz. Doch der Professor geht davon aus, dass eine Kolonie die Anzahl der hoch begabten Bienen durch die Klimatisierung steuern kann. Das sei sinnvoll, weil es sehr von den inneren und äußeren Bedingungen abhängt, wie effektiv eine Kolonie Nektar sammeln muss.

"Mit diesen Experimenten haben wir einen spannenden Fall der Rückkopplung von Nervensystemen auf Nervensysteme entdeckt." Besondere Leistungen des Zentralnervensystems der Biene - Lernen und Kommunizieren - dienen der Ansammlung von Energie in Form von Nektar. Aus der Umsetzung dieser Energie in Wärme für die Brut der Bienen - ebenfalls eine Verhaltensleistung und somit Produkt des Nervensystems - entstehen wiederum "kluge" Bienen, die dieses "Rad" durch bestmögliche Lernfähigkeit und hochwirksame Kommunikation leistungsfähig weiterdrehen können.

Die Arbeiten der Würzburger Bienenforscher werden finanziell unterstützt von der Deutschen Forschungsgemeinschaft, dem Bayerischen Staatsministerium für Landwirtschaft und Forsten sowie der Akademie der Wissenschaften und der Literatur Mainz.

Weitere Informationen:

Prof. Dr. Jürgen Tautz
Telefon 0931 - 888-4319, Fax 0931 - 888-4309
E-Mail: tautz@biozentrum.uni-wuerzburg.de

Robert Emmerich | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Berichte zu: Biene Kolonie Nektar Nervensystem Temperatur

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie