Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was macht Knochen und Zähne so hart?

15.05.2003


Max-Planck-Wissenschaftler weisen nach, dass extreme Festigkeit von Biomaterialien auf einer bisher unbekannten "Fehlertoleranz-Schwelle" im Nanometer-Bereich beruht


Hartes biologisches Gewebe wie Knochen (a), Wirbelsäulenknochen (b) oder Perlmutt (c) sind Nano-Komposite aus harten Mineralkristallen, eingebettet in eine weiche (Protein)-Matrix (d,e,f).

Foto: Max-Planck-Institut für Metallforschung


"Fehlerfreundliche" Nano-Mineralpartikel in Biokompositen. Sinkt die Größe der Partikel, verschwindet die Spannungskonzentration und die Festigkeit des Materials erreicht den Wert eines defektfreien Kristalls, trotz der Existenz von Materialfehlern.

Foto: Max-Planck-Institut für Metallforschung



Bis heute ist es ein großes Geheimnis, wie die Natur harte und sehr feste Materialien, wie Knochen, Zähne oder Holz, aus einer Mischung aus Proteinen, weich wie menschliche Haut, und Mineralien, spröde wie Schulkreide, erzeugen kann. Zwar ist inzwischen allgemein bekannt, dass dabei der Komposit-Charakter von biologischen Materialien eine wichtige Rolle spielt, doch über die Längenskala der darin enthaltenen Mineralteilchen wusste man bisher nur wenig. Wissenschaftler des Max-Planck-Instituts für Metallforschung und der Österreichischen Akademie der Wissenschaften haben jetzt nachgewiesen, dass harte biologische Materialien eine optimale Festigkeit und hohe Toleranz gegenüber Materialfehlern erreichen, wenn die darin enthaltenen Mineralpartikel nur noch wenige Nanometer groß sind. Die Forscher stellten fest, dass in diesen Stoffen bei etwa 30 Nanometern eine kritische Schwelle existiert, unterhalb derer Partikel in biologischen Komposit-Materialien unempfindlich gegenüber Materialfehlern werden. Sie erreichen dann die Festigkeit eines perfekten Kristalls, trotz Materialfehler. Dieses Phänomen deutet darauf hin, dass das heute weitgehend verwendete Konzept, Spannungskonzentrationen in Materialien zu vermeiden, auf der Nano-Skala nicht mehr gültig ist und eröffnet der Anwendung ganz neue Perspektiven.



Die Erforschung und Anwendung neuer Materialien ist von großer Bedeutung für die Entwicklung der menschlichen Zivilisation. Heute sind wir in der Lage, eine große Zahl von Materialien mit vielen interessanten mechanischen Eigenschaften herzustellen. Einige davon, wie Glas oder Mineralkristalle, sind sehr hart, aber auch brüchig. Andere, wie Gummi oder Kollagen, sind weich und zugleich zäh. Seit der Bronze- und Eisenzeit haben es die Menschen auch gelernt, aus verschiedenen Metallen und metallischen Legierungen harte und zähe Materialien herzustellen. Dank neuer Kenntnisse aus der Metallurgie wissen wir heute, dass Härte und Zähigkeit von Metallen zum großen Teil auf ihre kristalline Struktur zurückzuführen ist. Durch Versetzungen, eine wichtige Klasse von Materialdefekten, werden in zähen Materialien Spannungsüberhöhungen an rissähnlichen Defekten abgebaut. Das aber geht auf Kosten ihrer Härte. Dieser Zielkonflikt, feste, aber trotzdem fehlerfreundliche Materialien zu erzeugen, ist deshalb ein "Dauerbrenner" in der modernen Forschung. Eine der wichtigsten Herausforderungen besteht deshalb darin, Materialien zu entwickeln, die hart und zugleich fest sind und dennoch keine Versetzungen enthalten. Dies würde ein neues Gebiet in den Materialwissenschaften und zugleich ganz neue Anwendungen eröffnen, wie Hochtemperatur-Maschinen (Motoren, Turbinen), Leichtbau-Strukturen oder ermüdungs- oder korrosionsresistente Materialien.

Eine Möglichkeit, dieses Ziel zu erreichen, besteht darin, von "Mutter Natur" zu lernen, da es ihr durch natürliche Evolution offensichtlich gelungen ist, harte und zugleich feste Materialien zu produzieren, wie Knochen, Zähne, Muschelschalen oder Holz. Doch es wäre sehr schwierig zu versuchen, die biologische Erzeugung von Materialien in allen Details nachzuahmen. Besser und vor allem praktikabler wäre es, sich die Grundprinzipien, nach denen Biomaterialien generiert werden, durch innovative Hypothesen, Modellierungen und Experimente zu nutze zu machen. Hat man diese Prinzipien einmal verstanden, kann man daran gehen, Materialien für spezielle Anwendungen zu entwerfen, ohne dabei alle Details der biologischen Materialprozesse zu kennen.

Biomaterialien wie zum Beispiel Knochen sind molekulare Komposite aus Proteinen und Biomineralien. Während die Steifheit dieser Bio-Komposite denen des Minerals ähnelt, kann ihre "Fehlerfreundlichkeit" (Rissenergie) um einige Größenordungen höher sein als die des eigentlichen Minerals. So zeigt die Komposit-Schale von Perlmutt beispielsweise eine 3.000 Mal höhere Bruchenergie als die des eingebetteten Minerals Kalziumkarbonat (CaCO3). Trotz ihrer komplizierten hierarchischen Struktur beobachtet man bei Bio-Kompositen, dass ihre kleinsten Bauteile im allgemeinen nur einige Nanometer lang sind und als Mineralblättchen, symmetrisch ausgerichtet in einer ganz bestimmten Struktur, in eine Protein-Matrix eingebettet sind.

Doch warum spielt die Nanometer-Skala eine so große Rolle bei Biomaterialien? Die Forscher vom Max-Planck-Institut für Metallforschung und von der Österreichischen Akademie der Wissenschaften an der Universität Leoben haben jetzt herausgefunden, dass die spezielle Nanostruktur von Biomaterialien vermutlich der Schlüssel zu ihrer hohen Bruchenergie ist. Ihre Analyse deutet darauf hin, dass die Mineralkristalle in diesen Kompositen die Zugbelastung tragen, während die Proteinmatrix die Belastungen zwischen den Mineralblättchen über Abscherung überträgt. Die winzigen Mineralkristalle haben sehr hohe Streckungsgrade, die die große Differenz in der Steifheit zwischen Mineralien und Proteinen ausgleichen. Um die Integrität und Festigkeit der Komposit-Struktur zu sichern, muss der Mineralkristall große Zugdehnungen aushalten können, ohne zu brechen. Die Zugfestigkeit der Mineralkristalle ist daher der Schlüssel zur Festigkeit der Komposite als Ganzes.

Mit einer Reihe von mathematischen Gleichungen können die beteiligten Forscher zeigen, dass Mineralkristalle, die einen Riss enthalten, bei einer kritischen Größe von ungefähr 30 Nanometer die Rissfestigkeit eines perfekten, defektfreien Kristalls aufweisen. Außerdem haben sie eine numerische Methode entwickelt, um zu demonstrieren, dass das Spannungsfeld in der Nähe eines wachsenden Risses immer homogener wird, je kleiner die Ausdehnung der Struktur ist, und bei einer kritischen Länge von wenigen Nanometern seine höchste Festigkeit erreicht. Unterhalb dieser kritischen Größe sind Partikel unempfindlich gegenüber rissähnlichen Materialdefekten. Diese Ergebnisse erklären, warum Knochen, die aus Partikeln von nur einigen Nanometern Größe bestehen, wesentlich fester sind als Muschelschalen, deren Teilchen einige hundert Nanometer groß sind. Die Wissenschaftler gehen deshalb davon aus, dass das Ingenieurskonzept, wonach Spannungsüberhöhungen durch Materialfehler entstehen, bei der Konstruktion auf der Nanometerskala nicht mehr gilt, da Nano-Komposit-Materialien unempfindlich gegenüber Materialfehlern werden.

Weitere Informationen:

Prof. Huajian Gao
Max-Planck-Institut für Metallforschung, Stuttgart
Tel.: 0711 - 689-3510
Fax: 0711 - 689-3512
E-Mail: hjgao@mf.mpg.de

Prof. Huajian Gao | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mf.mpg.de

Weitere Berichte zu: Biomaterial Festigkeit Knochen Mineralkristall Nanometer

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Bluthochdruckschalter in der Nebenniere
20.02.2018 | Forschungszentrum Jülich GmbH

nachricht Markierung für Krebsstammzellen
20.02.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics